Skip to main content
Log in

Cocliques of maximal size in the prime graph of a finite simple group

Algebra and Logic Aims and scope

A prime graph of a finite group is defined in the following way: the set of vertices of the graph is the set of prime divisors of the order of the group, and two distinct vertices r and s are joined by an edge if there is an element of order rs in the group. We describe all cocliques of maximal size for finite simple groups.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price includes VAT (Canada)

Instant access to the full article PDF.

Institutional subscriptions

References

  1. A. V. Vasil’ev and E. P. Vdovin, “An adjacency criterion for the prime graph of a finite simple group,” Algebra Logika, 44, No. 6, 682–725 (2005).

    MathSciNet  MATH  Google Scholar 

  2. J. H. Conway, R. T. Curtis, S. P. Norton, R. A. Parker, and R. A. Wilson, Atlas of Finite Groups, Clarendon Press, Oxford (1985).

    MATH  Google Scholar 

  3. The GAP Group, GAP—Groups, Algorithms, and Programming, Vers. 4.4.12 (2008); http://www.gap-system.org.

  4. K. Zsigmondy, “Zur Theorie der Potenzreste,” Monatsh. Math. Phys., 3, 265–284 (1892).

    Article  MathSciNet  Google Scholar 

  5. M. Roitman, “On Zsigmondy primes,” Proc. Am. Math. Soc., 125, No. 7, 1913–1919 (1997).

    Article  MathSciNet  MATH  Google Scholar 

  6. A. V. Zavarnitsine, “Recognition of the simple groups L 3(q) by element orders,” J. Group Theory, 7, No. 1, 81–97 (2004).

    Article  MathSciNet  MATH  Google Scholar 

  7. A. S. Kondratiev, “Subgroups of finite Chevalley groups,” Usp. Mat. Nauk, 41, No. 1(247), 57–96 (1986).

    Google Scholar 

  8. R. W. Carter, “Conjugacy classes in the Weyl group,” Comp. Math., 25, No. 1, 1–59 (1972).

    MATH  Google Scholar 

  9. A. V. Zavarnitsine, “Recognition of finite groups by the prime graph,” Algebra Logika, 45, No. 4, 390–408 (2006).

    Article  MathSciNet  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to A. V. Vasil’ev.

Additional information

Translated from Algebra i Logika, Vol. 50, No. 4, pp. 425–470, July-August, 2011.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Vasil’ev, A.V., Vdovin, E.P. Cocliques of maximal size in the prime graph of a finite simple group. Algebra Logic 50, 291–322 (2011). https://doi.org/10.1007/s10469-011-9143-8

Download citation

  • Received:

  • Revised:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10469-011-9143-8

Keywords

Navigation