Skip to main content
Log in

An Adjacency Criterion for the Prime Graph of a Finite Simple Group

Algebra and Logic Aims and scope

Abstract

For every finite non-Abelian simple group, we give an exhaustive arithmetic criterion for adjacency of vertices in a prime graph of the group. For the prime graph of every finite simple group, this criterion is used to determine an independent set with a maximal number of vertices and an independent set with a maximal number of vertices containing 2, and to define orders on these sets; the information obtained is collected in tables. We consider several applications of these results to various problems in finite group theory, in particular, to the recognition-by-spectra problem for finite groups.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price includes VAT (Canada)

Instant access to the full article PDF.

Institutional subscriptions

REFERENCES

  1. J. S. Williams, “Prime graph components of finite groups,” J. Alg., 69, No.2, 487–513 (1981).

    Article  MATH  Google Scholar 

  2. A. S. Kondratiev, “On prime graph components for finite simple groups,” Mat. Sb., 180, No.6, 787–797 (1989).

    Google Scholar 

  3. V. D. Mazurov, “Characterization of groups by arithmetic properties,” Alg. Coll., 11, No.1, 129–140 (2004).

    MATH  MathSciNet  Google Scholar 

  4. A. V. Vasiliev, “On connection between the structure of a finite group and properties of its prime graph,” Sib. Mat. Zh., 46, No.3, 511–522 (2005).

    MathSciNet  Google Scholar 

  5. J. Conway, R. Curtis, S. Norton, et al., Atlas of Finite Groups, Clarendon, Oxford (1985).

    MATH  Google Scholar 

  6. The GAP Group, GAP — Groups, Algorithms, and Programming, Vers. 4.4 (2004); http://www.gap-system.org.

  7. R. W. Carter, Simple Groups of Lie Type, Pure Appl. Math., 28, Wiley, London (1972).

    Google Scholar 

  8. J. E. Humphreys, Linear Algebraic Groups, Springer, New York (1972).

    Google Scholar 

  9. R. Steinberg, Endomorphisms of Algebraic Groups, Mem. Am. Math. Soc., Vol. 80 (1968).

  10. A. Borel and J. de Siebental, “Les-sous-groupes fermes de rang maximum des groupes de Lie clos,” Comm. Math. Helv., 23, 200–221 (1949).

    MATH  Google Scholar 

  11. E. B. Dynkin, “Semisimple subalgebras of semisimple Lie algebras,” Mat. Sb., 30, No.2, 349–462 (1952).

    MATH  MathSciNet  Google Scholar 

  12. R. W. Carter, Finite Groups of Lie Type: Conjugacy Classes and Complex Characters, Wiley, New York (1985).

    MATH  Google Scholar 

  13. R. Carter, “Centralizers of semisimple elements in finite classical groups,” Proc. London Math. Soc., III. Ser., 42, No.1, 1–41 (1981).

    MATH  MathSciNet  Google Scholar 

  14. R. W. Carter, “Conjugacy classes in the Weyl group,” Comp. Math., 25, No.1, 1–59 (1972).

    MATH  MathSciNet  Google Scholar 

  15. D. Deriziotis, “Conjugacy classes and centralizers of semisimple elements in finite groups of Lie type,” Vorlesungen aus dem Fachbereich Mathetmatic der Universitat Essen, Heft 11 (1984).

  16. K. Zsigmondi, “Zur Theorie der Potenzreste,” Mon. Math. Phys., 3, 265–284 (1892).

    Google Scholar 

  17. D. I. Deriziotis, “The centralizers of semisimple elements of the Chevalley groups E 7 and E 8,” Tokyo J. Math., 6, No.1, 191–216 (1983).

    Article  MATH  MathSciNet  Google Scholar 

  18. M. S. Lucido and A. R. Moghaddamfar, “Groups with complete prime graph connected components,” J. Group Theory, 7, No.3, 373–384 (2004).

    MathSciNet  MATH  Google Scholar 

Download references

Authors

Additional information

Supported by RFBR grant No. 05-01-00797; by the Council for Grants (under RF President) and State Aid of Fundamental Science Schools, project NSh-2069.2003.1; by the RF Ministry of Education Developmental Program for Scientific Potential of the Higher School of Learning, project No. 8294; by FP “Universities of Russia,” grant No. UR.04.01.202; and by Presidium SB RAS grant No. 86-197.

__________

Translated from Algebra i Logika, Vol. 44, No. 6, pp. 682–725, November–December, 2005.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Vasiliev, A.V., Vdovin, E.P. An Adjacency Criterion for the Prime Graph of a Finite Simple Group. Algebr Logic 44, 381–406 (2005). https://doi.org/10.1007/s10469-005-0037-5

Download citation

  • Received:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10469-005-0037-5

Keywords

Navigation