Skip to main content
Log in

Gelfand-Tsetlin Modules: Canonicity and Calculations

  • Research
  • Published:
Algebras and Representation Theory Aims and scope Submit manuscript

Abstract

In this paper, we give a more down-to-earth introduction to the connection between Gelfand-Tsetlin modules over \(\mathfrak {gl}_n\) and diagrammatic KLRW algebras and develop some of its consequences. In addition to a new proof of this description of the category Gelfand-Tsetlin modules appearing in earlier work, we show three new results of independent interest: (1) we show that every simple Gelfand-Tsetlin module is a canonical module in the sense of Early, Mazorchuk and Vishnyakova, and characterize when two maximal ideals have isomorphic canonical modules, (2) we show that the dimensions of Gelfand-Tsetlin weight spaces in simple modules can be computed using an appropriate modification of Leclerc’s algorithm for computing dual canonical bases, and (3) we construct a basis of the Verma modules of \(\mathfrak {sl}_n\) which consists of generalized eigenvectors for the Gelfand-Tsetlin subalgebra. Furthermore, we present computations of multiplicities and Gelfand-Kirillov dimensions for all integral Gelfand-Tsetlin modules in ranks 3 and 4; unfortunately, for ranks \(>4\), our computers are not adequate to perform these computations.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Availability of data and materials

All code used in the production of data in this file is available at: https://github.com/bwebste/gelfand-tsetlin-public

References

  1. Brundan, J., Kleshchev, A., McNamara, P.J.: Homological properties of finite-type Khovanov–Lauda–Rouquier algebras. Duke Mathematical Journal 163(7) (2014)

  2. Brundan, J., Silverthorne, T., Webster, B.: Gap4 and python code for computations, available for download at https://github.com/bwebste/gelfand-tsetlin-public (2023)

  3. Bóna, M.: Combinatorics of permutations, 3 ed., Discrete mathematics and its applications (boca raton), CRC Press, Boca Raton, FL, Pages: xix+507 (2022)

  4. Drozd, Y.A., Futorny, V.M., Ovsienko, S.A.: Harish-Chandra subalgebras and Gelfand–Zetlin modules, Finite-dimensional algebras and related topics (Ottawa, ON, 1992), NATO adv. Sci. Inst. Ser. C math. Phys. Sci., vol. 424, Kluwer Acad. Publ., Dordrecht, pp. 79–93 (1994)

  5. Drozd, Y.A., Ovsienko, S.A., Futorny, V.M.: On Gel’fand-Zetlin modules, Proceedings of the Winter School on Geometry and Physics (Srní, 1990), Rendiconti del Circolo Matematico di Palermo, ISSN: 1592-9531. Rend. Circ. Mat. Palermo (2) Suppl pp. 143–147 (1991)

  6. Early, N., Mazorchuk, V., Vishnyakova, E.: Canonical Gelfand–Zeitlin Modules over Orthogonal Gelfand–Zeitlin Algebras. Int. Math. Res. Not. 2020(20), 6947–6966 (2020)

  7. Futorny, V., Grantcharov, D., Ramirez, L.E.: Gelfand-Tsetlin modules of sl(3) in the principal block, Representations of Lie algebras, quantum groups and related topics, Contemp. Math., vol. 713, Amer. Math. Soc., Providence, RI, pp. 121–134 (2018)

  8. Futorny, V., Grantcharov, D., Ramirez, L.E., Zadunaisky, P.: Bounds of Gelfand-Tsetlin multiplicities and tableaux realizations of Verma modules. J. Algebra 556, 412–436 (2020)

    Article  MathSciNet  Google Scholar 

  9. Futorny, V., Grantcharov, D., Ramirez, L.E., Zadunaisky, P.: Gelfand-Tsetlin theory for rational Galois algebras. Israel J. Math. 239(1), 99–128 (2020)

    Article  MathSciNet  Google Scholar 

  10. Gelfand, I.M., Cetlin, M.L.: Finite-dimensional representations of the group of unimodular matrices. Doklady Akad. Nauk SSSR (N.S.) 71:825–828 (1950)

  11. Hartwig, J.T.: Principal Galois orders and Gelfand-Zeitlin modules. Adv. Math. 359, 106806 (2020)

    Article  MathSciNet  Google Scholar 

  12. Khovanov, M., Lauda, A.D.: A diagrammatic approach to categorification of quantum groups I. Representation Theory of the American Mathematical Society 13(14), 309–47 (2009)

  13. Khovanov, M., Lauda, AD., Mackaay, M., Stošić, M.: Extended graphical calculus for categorified quantum sl (2). American Mathematical Society (2012)

  14. Kamnitzer, J., Tingley, P., Webster, B., Weekes, A., Yacobi, O.: On category O for affine Grassmannian slices and categorified tensor products. Proc. Lond. Math. Soc. 119(5), 1179–1233 (2019)

    Article  MathSciNet  Google Scholar 

  15. Lauda, AD.: Lauda AD. A categorification of quantum sl (2). Advances in Mathematics 225(6),3327–424 (2010)

  16. Leclerc, B.: Dual canonical bases, quantum shuffles and q-characters. Mathematische Zeitschrift 246, 691–732 (2004)

  17. Mazorchuk, V.: Orthogonal Gelfand-Zetlin algebras I. Contributions to Algebra and Geometry 40(2), 399–415 (1999)

    MathSciNet  Google Scholar 

  18. McNamara, PJ.: Finite dimensional representations of Khovanov–Rouquier algebras I: Finite type, Journal für die reine und angewandte Mathematik (Crelles Journal) 2015(707), 103–124 (2015)

  19. Mazorchuk, V., Vishnyakova, E.: Harish-Chandra modules over invariant subalgebras in a skew-group ring (2023)

  20. Soergel, W.: The combinatorics of Harish-Chandra bimodules. Journal für die Reine und Angewandte Mathematik 429, 49–74 (1992)

  21. Stroppel, C., Webster, B.: Quiver Schur algebras and q-Fock space (2014). arXiv:1110.1115

  22. Varagnolo, M., Vasserot, E.: Canonical bases and KLR-algebras. J. Reine Angew. Math. 659, 67–100 (2011)

    MathSciNet  Google Scholar 

  23. Webster, B.: Canonical bases and higher representation theory. Compos. Math. 151(1), 121–166 (2015)

    Article  MathSciNet  Google Scholar 

  24. Webster, B.: Knot invariants and higher representation theory. Mem. Amer. Math. Soc. 250(1191), 141 (2017)

    MathSciNet  Google Scholar 

  25. Webster, B.: On generalized category O for a quiver variety. Math. Ann. 368(1), 483–536 (2017)

    Article  MathSciNet  Google Scholar 

  26. Webster, B.: Koszul duality between Higgs and Coulomb categories \(\cal{O}\)(2019). arXiv:1611.06541

  27. Webster, B.: Weighted Khovanov-Lauda-Rouquier algebras, Documenta Mathematica 24, 209–250 (2019). MR3946709

  28. Webster.: On graded presentations of Hecke algebras and their generalizations, Algebraic Combinatorics 3(1), 1–38 (2020)

  29. Webster, B.: Gelfand-Tsetlin modules in the Coulomb context (2020). arXiv:1904.05415

  30. Webster, B.: Three perspectives on categorical symmetric Howe duality (2020).arXiv:2001.07584

Download references

Acknowledgements

Many thanks to Jon Brundan for generously sharing computer code that our program was based on, and to Pablo Zadunaisky, Elizaveta Vishnyakova, Walter Mazorchuk and Jonas Hartwig for helpful discussions about their work.

Funding

T. S. was supported by NSERC and the University of Waterloo through an Undergraduate Student Research Award. B. W. is supported by an NSERC Discovery Grant. This research was supported in part by Perimeter Institute for Theoretical Physics. Research at Perimeter Institute is supported by the Government of Canada through the Department of Innovation, Science and Economic Development Canada and by the Province of Ontario through the Ministry of Research, Innovation and Science.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ben Webster.

Additional information

Presented by: Michela Varagnolo

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Silverthorne, T., Webster, B. Gelfand-Tsetlin Modules: Canonicity and Calculations. Algebr Represent Theor (2024). https://doi.org/10.1007/s10468-024-10264-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s10468-024-10264-y

Keywords

Mathematics Subject Classification (2010)

Navigation