Skip to main content
Log in

Littlewood-Richardson rule for generalized Schur Q-functions

  • Published:
Algebras and Representation Theory Aims and scope Submit manuscript

Abstract

Littlewood-Richardson rule gives the expansion formula for decomposing a product of two Schur functions as a linear sum of Schur functions, while the decomposition formula for the multiplication of two Schur Q-functions is also given as the combinatorial model by using the shifted tableaux. In this paper, we firstly use the shifted Littlewood-Richardson coefficients to give the coefficients of generalized Schur Q-function expanded as a sum of Schur Q-functions and the structure constants for the multiplication of two generalized Schur Q-functions, respectively. Then we will combine the vertex operator realizations of generalized Schur Q-functions and raising operators to construct the algebraic forms for the multiplication of generalized Schur Q-functions.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Data Availability

Data sharing not applicable to this article as no datasets were generated or analysed during the current study.

References

  1. Baker, T.H.: Vertex operator realization of symplectic and orthogonal S-functions. J. Phys. A: Math. Gen. 29, 3099–3117 (1996)

    Article  MathSciNet  Google Scholar 

  2. Cho, S.: A new Littlewood-Richardson rule for Schur P-functions. Trans. Am. Math. Soc. 365, 939–972 (2013)

    Article  MathSciNet  Google Scholar 

  3. Duc, K.N.: On the shifted Littlewood-Richardson coefficients and Littlewood-Richardson coefficients. arxiv:2004.01121

  4. Fulton, W., Harris, J.: Representation theory, A first course. Springer-Verlag, New York (1991)

    Google Scholar 

  5. Gillespie, M., Levinson, J., Purbhoo, K.: A crystal-like structure on shifted tableaux. Algebraic Combinatorics, 3(3), 693–725 (2020)

    Article  MathSciNet  Google Scholar 

  6. Hoffman, P., Humphreys, J.: Projective representations of the symmetric groups. Q-functions and shifted tableaux. The Clarendon Press, Oxford University Press, New York (1992)

    Book  Google Scholar 

  7. Huang, F., Wang, N.: Generalized symplectic Schur functions and SUC hierarchy. J. Math. Phys. 61, 061508 (2020)

    Article  MathSciNet  Google Scholar 

  8. Jing, N.: Vertex operators, symmetric functions, and the spin groups \(\Gamma _n\). J. Algebra. 138(2), 340–398 (1991)

    Article  MathSciNet  Google Scholar 

  9. Jing, N.: Vertex operators and Hall-Littlewood symmetric functions. Adv. in Math. 87, 226–248 (1991)

    Article  MathSciNet  Google Scholar 

  10. Jing, N., Nie, B.: Vertex operators, Weyl determinant formulae and Littlewood duality. Ann. Combin. 19, 427–442 (2015)

    Article  MathSciNet  Google Scholar 

  11. Józefiak, T., Pragacz, P.: A determinantal formula for skew Q-functions. J. London Math. Soc. (2) 43, 76–90 (1991)

    Article  MathSciNet  Google Scholar 

  12. Koike, K.: On the decomposition of tensor products of the representations of the classical groups: By means of the universal characters. Adv. in Math. 74, 57–86 (1989)

    Article  MathSciNet  Google Scholar 

  13. Li, C.Z.: Strongly coupled B type universal characters and hierarchies. Theor. Math. Phys. 201(3), 1732–1741 (2019)

    Article  MathSciNet  Google Scholar 

  14. Li, C.Z.: Plethystic B type KP and Universal Character hierarchies. J. Algebr. Comb. 55, 691–714 (2022)

    Article  MathSciNet  Google Scholar 

  15. Littlewood, D. E. : On certain symmetric functions. Proc. London Math. Soc. (3) 11, 485–498 (1961)

    Article  MathSciNet  Google Scholar 

  16. Littlewood, D.E., Richardson, A.R.: Group characters and algebra. Phil. Trans. A 233, 99–141 (1934)

    Google Scholar 

  17. Macdonald, I. G.: Symmetric functions and Hall polynomials. Oxford Mathematical Monographs, Clarendon Press, Oxford (1979)

    Google Scholar 

  18. Miwa, T., Jimbo, M., Date, E.: Solitons: Differential equations, symmetries and infinite dimensional algebras. Cambridge University Press, Cambridge (2000)

    Google Scholar 

  19. Nimmo, J.: Hall-Littlewood symmetric functions and the BKP equation. J. Phys, A: Math. Gen. 23, 751-760 (1990)

  20. Ogawa, Y.: Generalized Q-functions and UC hierarchy of B-type. Tokyo J. Math. 32 (2), 349–380 (2009)

    Article  MathSciNet  Google Scholar 

  21. Okada, S.: Pfaffian formulas and Schur Q-function identities. Adv. in Math. 353, 446–470 (2019)

    Article  MathSciNet  Google Scholar 

  22. Pragacz, P.: Algebro-Geometric applications of Schur s- and q-polynomials. In: Topics in Invariant Theory. Lecture Notes in Mathematics, Springer, Berlin, Heidelberg, 1478, 130-191 (1991)

  23. Salam, M.A., Wybourne, B.G.: Shifted tableaux, Schurs Q-functions, and Kronecker products of \(S_n\) spin irreps. J. Math. Phys. 31, 1310–1314 (1990)

    Article  MathSciNet  Google Scholar 

  24. Schur, I.: Über die Darstellung der symmetrischen und der alternierenden Gruppe durch gebrocheme lineare Substitionen. J. Reine Angew. Math. 139, 155–250 (1911)

    Article  MathSciNet  Google Scholar 

  25. Shimozono, M.: Multiplying Schur Q-functions. J. Combina. Theory, Series A 87(1): 198-232 (1999)

  26. Shimozono, M., Zabrocki, M.: Hall-Littlewood vertex operators and generalized Kostka polynomials. Adv. in Math. 158, 66–85 (2001)

    Article  MathSciNet  Google Scholar 

  27. Stanley, R.P.: Enumerative Combinatorics, Volume II. Cambridge University Press, Cambridge (1999)

    Book  Google Scholar 

  28. Stembridge, J.R.: Shifted tableaux and the projective representations of symmetric groups. Adv. in Math. 74, 87–134 (1989)

    Article  MathSciNet  Google Scholar 

  29. Tsuda, T.: Universal Characters and an extension of the KP hierarchy. Commun. Math. Phys. 248, 501–526 (2004)

    Article  MathSciNet  Google Scholar 

  30. Weyl, H.: The classical groups; their invariants and representations. Princeton Univ. Press, Princeton (1946)

    Google Scholar 

  31. Worley, D. R.: A Theory of Shifted Young Tableaux. Ph.D. Thesis, Massachusetts Institute of Technology, 1984

  32. You, Y.: Polynomial solutions of the BKP hierarchy and projective representations of symmetric groups, in Infinite-Dimensional Lie Algebras and Groups (Luminy-Marseille, 1988), Adv. Ser. Math. Phys., Vol. 7, World Sci. Publ., Teaneck, NJ, 449-464 (1989)

Download references

Acknowledgements

Chuanzhong Li is supported by the National Natural Science Foundation of China under Grant No. 12071237.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Chuanzhong Li.

Ethics declarations

Conflicts of interest

The authors declare that there are no conflicts of interest regarding the publication of this paper.

Additional information

Communicated by Cristian Lenart.

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Huang, F., Chu, Y. & Li, C. Littlewood-Richardson rule for generalized Schur Q-functions. Algebr Represent Theor 26, 3143–3165 (2023). https://doi.org/10.1007/s10468-023-10204-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10468-023-10204-2

Keywords

Mathematics Subject Classifications(2010)

Navigation