Skip to main content
Log in

Continuous Quivers of Type A (IV)

Continuous Mutation and Geometric Models of E-clusters

  • Published:
Algebras and Representation Theory Aims and scope Submit manuscript

Abstract

This if the final paper in the series Continuous Quivers of Type A. In this part, we generalize existing geometric models of type A cluster structures for the new E-clusters introduced in part (III). We also introduce an isomorphism of cluster theories and a weak equivalence of cluster theories. Examples of both are given. We use these geometric models and isomorphisms of cluster theories to begin classifying continuous type A cluster theories. We also introduce a continuous generalization of mutation. This encompasses mutation and (infinite) sequences of mutation. Then we link continuous mutation to our earlier geometric models. Finally, we introduce the space of mutations which generalizes the exchange graph of a cluster structure, and show that paths in this space are continuous mutations.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Data Availability

The author did not collect or produce any data. Thus there is no data to make available.

References

  1. Fomin, S., Zelevinksy, A.: Cluter algebras I: Foundations. J. Am. Math. Soc. 15(15), 497–529 (2002). https://doi.org/10.1090/S0894-0347-01-00385-X

    Article  Google Scholar 

  2. Golden, J.K., Goncharov, A.B., Spradlin, M., Vergud, C., Volovicha, A.: Motivic amplitudes and cluster coordinates. J. High Energy Phys. 2014 (1), 91 (2014). https://doi.org/10.1007/JHEP01(2014)091

    Article  Google Scholar 

  3. Buan, A., Marsh, B., Reineke, M., Reiten, I., Todorov, G.: Tilting theory and cluster combinatorics. Adv. Math. 204(2), 572–618 (2006). https://doi.org/10.1016/j.aim.2005.06.003

    Article  MathSciNet  MATH  Google Scholar 

  4. Caldero, P., Chapoton, F., Schiffler, R.: Quivers with Relations Arising From Clusters (an Case). Trans. Am. Math. Soc. 358 (3), 1347–1364 (2006). https://doi.org/10.1090/S0002-9947-05-03753-0

    Article  MathSciNet  MATH  Google Scholar 

  5. Holm, T., Jørgensen, P.: On a cluster category of infinite Dynkin type, and the relation to triangulations of the infinity-gon. Math. Z 270(1), 277–295 (2012). https://doi.org/10.1007/s00209-010-0797-z

    Article  MathSciNet  MATH  Google Scholar 

  6. Baur, K., Graz, S.: Transfinite mutations in the completed infinity-gon. J. Comb. Theory Ser. A 155, 321–359 (2018). https://doi.org/10.1016/j.jcta.2017.11.011

    Article  MathSciNet  MATH  Google Scholar 

  7. Fomin, S., Shapiro, M., Thurston, D.: Cluster algebras and triangulated surfaces. Part I: Cluster complexes. Acta Math 201, 83–146 (2008). https://doi.org/10.1007/s11511-008-0030-7

    Article  MathSciNet  MATH  Google Scholar 

  8. Amiot, C.: Triangulated categories, equivalences and topological models. Representation Theory [math.RT], Université Grenoble-Alpes. https://hal.archives-ouvertes.fr/tel-03279648/document (2021)

  9. Igusa, K., Todorov, G.: Continuous cluster categories I. Algebras Represent. Theory 18(1), 65–101 (2015). https://doi.org/10.1007/s10468-014-9481-z

    Article  MathSciNet  MATH  Google Scholar 

  10. Arkani-Hamed, N., Bai, Y., He, S., Yan, G.: Scattering Forms and the Positive Geometry of Kinematics, Color and the Worldsheet. J. High Energy Phys. (5) (2017)

  11. Serhiyenko, K., Bennett, M.S., Williams, L.: Cluster structures in Schubert varieties in the Grassmannian. Proc. Lond. Math. Soc. 119(6), 1694–1744 (2019). https://doi.org/10.1112/plms.12281

    Article  MathSciNet  MATH  Google Scholar 

  12. Liu, Y., Zhou, P.: Abelian categories arising from cluster tilting subcategories II: quotient functors. Proceedings of the Royal Society of Edinburgh Section A Mathematics (2019)

  13. Liu, Y., Zhou, P.: Abelian categories arising from cluster tilting subcategories. Applied Categorical Structures (2020)

  14. Arkani-Hamed, N., He, S., Salvatori, G., Thomas, H.: ABCDs of Causal Diamonds, Cluster Polytopes and Scattering Amplitudes. arXiv:1912.12948 [hep-th]. https://doi.org/10.48550/arXiv.1912.12948 (2019)

  15. Kulkarni, M.C., Matherne, J.P., Mousavand, K., Rock, J.: A Continuous Associahedron of type A. arXiv:2108.12927 [math.RT]. https://doi.org/10.48550/arXiv.2108.12927 (2021)

  16. Igusa, K., Rock, J.D., Todorov, G.: Continuous Quivers of Type A (I) Foundations. Rendiconti del Circolo Matematico di Palermo Series, 2 (2022)

  17. Rock, J.D.: Continuous Quivers of Type A (II) The Auslander–Reiten Space. arXiv:1910.04140v1 [math.RT]. https://doi.org/10.48550/arXiv.1910.04140 (2019)

  18. Igusa, K., Rock, J.D., Todorov, G.: Continuous quivers of type a (III) embeddings of cluster theories. Nagoya mathematical journal (2022)

  19. Igusa, K., Todorov, G.: Continuous cluster categories of type D. arXiv:1309.7409 [math.RT]. https://doi.org/10.48550/arXiv.1309.7409 (2013)

  20. Hanson, E.J., Rock, J.D.: Decomposition of pointwise finite-dimensional \( \mathbb {S}^{1}\) Persistence Modules. arXiv:2006.13793v2 [math.RT]. https://doi.org/10.48550/arXiv.2006.13793 (2020)

  21. Botnan, M. B., Crawley-Boevey, W.: Decomposition of persistence modules. Proc. Am. Math. Soc. 148, 4581–4596 (2020). https://doi.org/10.1090/proc/14790

    Article  MathSciNet  MATH  Google Scholar 

  22. Garcia, M., Igusa, K.: Continuously triangulating the continuous cluster category. Topol. Applic. 285, 107411 (2020). https://doi.org/10.1016/j.topol.2020.107411

    Article  MathSciNet  MATH  Google Scholar 

  23. Jørgensen, P., Yakimov, M.: c-vectors of 2-Calabi–Yau categories and Borel subalgebras of \(\mathfrak {sl}_{\infty }\). Sel. Math. (N.S.) 26 (1), 1–46 (2020). https://doi.org/10.1007/s00029-019-0525-4

    Article  MathSciNet  MATH  Google Scholar 

  24. Buan, A.B., Iyama, O., Reiten, I., Scott, J.: Cluster structures for 2-Calabi–Yau categories and unipotent groups. Compos. Math. 45(4), 1035–1079 (2009). https://doi.org/10.1112/S0010437X09003960

    Article  MathSciNet  MATH  Google Scholar 

  25. Rock, J.D.: Cluster Theories and Cluster Structures of Type A. arXiv:2112.14795 [math.RT]. https://doi.org/10.48550/arXiv.2112.14795 (2022)

  26. Barnard, E., Gunawan, E., Meehan, E., Schiffler, R.: Cambrian combinatorics on quiver representations (type \(\mathbb {A}\)). Adv. Appl. Math. 143. https://doi.org/10.1016/j.aam.2022.102428 (2022)

Download references

Acknowledgements

The author was partly supported by Brandeis University during their graduate studies and partly supported by UGent BOF grant BOF/STA/201909/038 and FWO grants G023721N and G0F5921N. The author thanks Kiyoshi Igusa and Gordana Todorov for their guidance and support, Ralf Schiffler for organizing the Cluster Algebra Summer School in 2017 where this series was conceived, and Eric J. Hanson for helpful discussions. Finally, the author thanks the anonymous reviewer for careful reading and numberous helpful suggestions, especially regarding the clarity of figures.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Job Daisie Rock.

Ethics declarations

Competing interests

The author has no competing interests to declare that are relevant to the content of this article.

Additional information

Presented by: Michela Varagnolo

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Rock, J.D. Continuous Quivers of Type A (IV). Algebr Represent Theor 26, 2255–2288 (2023). https://doi.org/10.1007/s10468-022-10175-w

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10468-022-10175-w

Keywords

Mathematics Subject Classification (2010)

Navigation