Skip to main content
Log in

τ-tilting Finiteness of Biserial Algebras

  • Published:
Algebras and Representation Theory Aims and scope Submit manuscript

Abstract

We compare the notions of τ-tilting finiteness and representation-finiteness of the biserial algebras. In particular, we treat the minimal representation-infinite biserial algebras and give a full classification of them with respect to τ-tilting finiteness. We build upon Ringel’s work on minimal representation-infinite algebras and use the brick-τ-rigid correspondence of Demonet, Iyama and Jasso. As a byproduct, we obtain that a minimal representation-infinite biserial algebra is τ-tilting infinite if and only if it is a gentle algebra.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Data Availability

No datasets were generated or analysed during the current study. The manuscript has not been, and will not be, submitted elsewhere while it is in the editorial process.

References

  1. Angeleri–Hügel, L., Happel, D., Krause, H.: Handbook of Tilting Theory, London Mathematical Society Lecture Note Series 332. Cambridge University Press (2007)

  2. Adachi, T., Iyama, O., Reiten, I.: τ-tilting theory. Compos. Math. 150, 415–452 (2014)

    Article  MathSciNet  Google Scholar 

  3. Auslander, M., Reiten, I.: Applications of contravariantly finite subcategories. Adv. Math. 111–152 (1991)

  4. Assem, I., Simson, D., Skowroński, A.: Elements of the Representation Theory of Associative Algebras, vol. 1. Cambridge University Press, Cambridge (2006)

    Book  Google Scholar 

  5. Bautista, R.: On algebras of strongly unbounded representation type. Comment. Math. Helv. 60, 392–399 (1985)

    Article  MathSciNet  Google Scholar 

  6. Bongartz, K.: Indecomposable modules are standard. Comment. Math. Helv. 60, 400–410 (1985)

    Article  MathSciNet  Google Scholar 

  7. Bongartz, K.: Indecomposables live in all smaller lengths. Represent. Theory 17, 199–225 (2013)

    Article  MathSciNet  Google Scholar 

  8. Bongartz, K.: On minimal representation-infinite algebras, arXiv:1705.10858v4

  9. Brüstle, T., Douville, G., Mousavand, K., Thomas, H., Yıldırım, E.: On Combinatorics of gentle algebras. Canad. J. Math. 72, 1551–1580 (2020)

    Article  MathSciNet  Google Scholar 

  10. Bautista, R., Gabriel, P., Roiter, A.V., Salmerón, L.: Representation-finite algebras and multiplicative bases. Inventiones mathematicae 81, 217–285 (1985)

    Article  MathSciNet  Google Scholar 

  11. Butler, M.C.R., Ringel, C.M.: Auslander-Reiten sequences with few middle terms. Comm. in Algebra. 15, 145–179 (1987)

    Article  MathSciNet  Google Scholar 

  12. Crawley-Boevey, W.: Maps between representations of zero-relation algebras. J. Algebra 126, 259–263 (1989)

    Article  MathSciNet  Google Scholar 

  13. Crawley-Boevey, W.: Tameness of biserial algebras. Arch. Math. 65, 399–407 (1995)

    Article  MathSciNet  Google Scholar 

  14. Crawley-Boevey, W.: Classification of modules for infinite-dimensional string algebras. Trans. Amer. Math. Soc. 370, 3289–3313 (2018)

    Article  MathSciNet  Google Scholar 

  15. Crawley-Boevey, W., Vila-Freyer, R.: The Structure of Biserial Algebras. J. Lond. Math. Soc. 57, 41–54 (1998)

    Article  MathSciNet  Google Scholar 

  16. Demonet, L., Iyama, O., Jasso, G.: τ-tilting finite algebras and g-vectors. Int. Math. Res. Not. IMRN, 852–892 (2019)

  17. Demonet, L., Iyama, O., Reading, N., Reiten, I., Thomas, H.: Lattice theory of torsion classes, arXiv:1711.01785

  18. Geiss, C., Leclerc, B., Schröer, J.: Rigid modules over preprojective algebras. Inventiones mathematicae 165, 589–632 (2008)

    Article  MathSciNet  Google Scholar 

  19. Happel, D., Unger, L.: Almost complete tilting modules. Proc. Amer. Math. Soc. 107, 603–610 (1989)

    Article  MathSciNet  Google Scholar 

  20. Happel, D., Vossieck, D.: Minimal algebras of infinite representation type with preprojective component. Manuscripta Mathematica Math. 42, 221–243 (1983)

    Article  MathSciNet  Google Scholar 

  21. Jans, J.P.: On the indecomposable representations of algebras. Ann. Math. 66, 418–429 (1957)

    Article  MathSciNet  Google Scholar 

  22. Krause, H.: Maps between tree and band modules. J. Algebra 137, 186–194 (1991)

    Article  MathSciNet  Google Scholar 

  23. Mizuno, Y.: Classifying τ-Tilting modules over preprojective algebras of Dynkin type. Math. Z. 277, 665–690 (2014)

    Article  MathSciNet  Google Scholar 

  24. Mousavand, K.: τ-tilting finiteness of non-distributive algebras and their module varieties. J. Algebra 608, 673–690 (2022)

    Article  MathSciNet  Google Scholar 

  25. Mousavand, K.: Minimal τ-tilting infinite algebras, arXiv:2103.12700

  26. Marks, F., Šťovìček, J.: Torsion classes, wide subcategories and localisations. Bull. Lond.Math. Soc., 405–416 (2017)

  27. Plamondon, P.-G.: τ-tilting finite gentle algebras are representation-finite. Pac. J. Math. 302, 709–716 (2019)

    Article  MathSciNet  Google Scholar 

  28. Ringel, C.M.: Representations of k-species and bimodules. J. Algebra 41, 269–302 (1976)

    Article  MathSciNet  Google Scholar 

  29. Ringel, C.M.: The Minimal Representation-infinite Algebras which are Special Biserial. Representations of Algebras and Related Topics, EMS Series of Congress Reports. European Math. Soc. Publ House, Zürich (2011)

    Google Scholar 

  30. Schröer, J.: Modules without self-extensions over gentle algebras. J. Algebra 216, 178–189 (1999)

    Article  MathSciNet  Google Scholar 

  31. Schofield, A.: General representations of quivers. Proc. London Math. Soc. 65, 46–64 (1992)

    Article  MathSciNet  Google Scholar 

  32. Skowroński, A.: Minimal representation-infinite artin algebras. Math. Proc. Camb. Phil. Soc. 116, 229–243 (1994)

    Article  MathSciNet  Google Scholar 

  33. Simson, D., Skowroński, A.: Elements of the Representation Theory of Associative Algebras, vol. 2. Cambridge University Press, Cambridge (2007)

    Book  Google Scholar 

  34. Schroll, S., Treffinger, H., Valdivieso, Y.: On band modules and τ-tilting finiteness. Math. Z. 299, 2405–2417 (2021)

    Article  MathSciNet  Google Scholar 

  35. Skowroński, A.: J. Waschbüsch Representation-finite biserial algebras. J. Reine Angew. Math. 345, 172–181 (1983)

    MathSciNet  Google Scholar 

  36. Thomas, H.: Stability, shards, and preprojective algebras, Contemporary Mathematics, vol. 705 (2018)

  37. Unger, L.: Schur modules over wild, finite-dimensional path algebras with three simple modules. J. Pure Appl. Algebra 64, 205–222 (1990)

    Article  MathSciNet  Google Scholar 

  38. Wald, B., Waschbüsch, J.: Tame biserial algebras. J. Algebra 95, 480–500 (1985)

    Article  MathSciNet  Google Scholar 

Download references

Acknowledgements

The author would like to thank Hugh Thomas and Charles Paquette for several stimulating discussions and useful comments. Moreover, the author is grateful to the referee for various helpful comments which noticeably improved the exposition of this paper.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Kaveh Mousavand.

Ethics declarations

Conflict of Interests

The author declares that he has no conflicts of interest.

Additional information

Presented by: Henning Krause

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Mousavand, K. τ-tilting Finiteness of Biserial Algebras. Algebr Represent Theor 26, 2485–2522 (2023). https://doi.org/10.1007/s10468-022-10170-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10468-022-10170-1

Keywords

Mathematics Subject Classification (2010)

Navigation