Skip to main content
Log in

Locally Finite Central Simple Algebras

  • Published:
Algebras and Representation Theory Aims and scope Submit manuscript

Abstract

We develop a comprehensive theory of algebras over a field which are locally both finite dimensional and central simple. We generalize fundamental concepts of the theory of finite dimensional central simple algebras, and introduce supernatural matrix algebras, the supernatural degree and matrix degree, and so on. We define a Brauer monoid, whose unique maximal subgroup is the classical Brauer group, and show that once infinite dimensional division algebras exist over the field, they are abundant.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Abrams, G.: Leavitt path algebras: the first decade. Bull. Math. Sci. 5(1), 59–120 (2015)

    Article  MathSciNet  MATH  Google Scholar 

  2. Albert, A.A.: Structure of algebras. AMS Coll Publ XXIV (1961)

  3. Atiyah, M. F., MacDonald, I. G.: Introduction to commutative algebra perseus. Books (1969)

  4. Auel, A., Brussel, E., Garibaldi, S., Vishne, U.: Open problems on central simple algebras. Transform. Groups 16(1), 219–264 (2011)

    Article  MathSciNet  MATH  Google Scholar 

  5. Barsotti, I.: Noncountable normally locally finite division algebras. Proc. Amer. Math. Soc. 8, 1101–1103 (1957)

    Article  MathSciNet  MATH  Google Scholar 

  6. Brauer, R.: On algebras which are connected with the semisimple continuous groups. Ann. Math. 38, 857–872 (1937)

    Article  MathSciNet  MATH  Google Scholar 

  7. Bar-On, T., Gilat, S., Matzri, E., Vishne, U.: The algebra of supernatural matrices. Submitted.

  8. Deo, T. T., Bien, M. H., Hai, B. X.: On the radicality of maximal subgroups in GLn(D). J. Algebra 365, 42–49 (2012)

    Article  MathSciNet  MATH  Google Scholar 

  9. Deo, T. T., Bien, M. H., Hai, B. X.: On weakly locally finite division rings. Acta Math. Vietnam. 44, 553–569 (2019)

    Article  MathSciNet  MATH  Google Scholar 

  10. Hai, B. X., Deo, T. T., Bien, M. H.: On subgroups in division rings of type 2. Stud. Sci. Math. Hung. 49(4), 549–557 (2012)

    MathSciNet  MATH  Google Scholar 

  11. Gille, P. H., Szamuely, T.: Central simple algebras and galois cohomology. Cambridge Studies in Advanced Mathematics 101 (2006)

  12. Glimm, J.G.: On a certain class of operator algebras. Trans. Amer. Math. Soc. 95, 318–340 (1960)

    Article  MathSciNet  MATH  Google Scholar 

  13. Haile, D. E.: The Brauer monoid of a field. J. Algebra 81(2), 521–539 (1983)

    Article  MathSciNet  MATH  Google Scholar 

  14. Haile, D. E., Rowen, L. H.: Weakly Azumaya algebras. J. Algebra 250(1), 134–177 (2002)

    Article  MathSciNet  MATH  Google Scholar 

  15. Jacobson, N.: Structure of rings, colloquium publications. XXXVII AMS (1956)

  16. Jacobson, N.: Finite Dimensional Division Algebras. Springer, Berlin (1996)

    Book  MATH  Google Scholar 

  17. Ježek, J., Kepka, T., Němec, P.: Commutative semigroups that are nil of index 2 and have no irreducible elements. Math. Bohem. 133(1), 1–7 (2008)

    Article  MathSciNet  MATH  Google Scholar 

  18. Kaplansky, I.: Rings with a polynomial identity. Bull. Amer. Math. Soc. 54, 575–580 (1948)

    Article  MathSciNet  MATH  Google Scholar 

  19. Knus, M. -A., Merkurjev, A., Rost, M., Tignol, J. -P.: The book of involutions, Colloquium Publications, vol. 44 American Mathematical Society (1998)

  20. Köthe, G.: Schiefkörper unendlichen Range über dem Zentrum. Math. Ann. 105, 15–39 (1931)

    Article  MathSciNet  MATH  Google Scholar 

  21. Lam, T. Y.: Lectures on Modules and Rings, LNM 189, Springer-Verlag (1999)

  22. Lam, T. Y.: Multiples, modules with isomorphic matrix rings - a survey, monographie 35 de L’Enseignement Mathématiqueu, Genève (1999)

  23. Maltcev, V., Mazorchuk, V.: Presentation of the singular part of the Brauer monoid. Math. Bohem. 132(3), 297–323 (2007)

    Article  MathSciNet  MATH  Google Scholar 

  24. Matzri, E: Symbol length in the Brauer group of a field. Trans. Amer. Math. Soc. 368, 413–427 (2016)

    Article  MathSciNet  MATH  Google Scholar 

  25. McCrimmon, K.: Deep matrices and their Frankenstein actions, Non-associative algebra and its applications. Lect. Notes Pure Appl. Math. 246, 261–274 (2006). Chapman & Hall/CRC, Boca Raton FL

    Article  MATH  Google Scholar 

  26. Novikov, B. V.: On the Brauer monoid (Russian). Mat. Zametki 57(4), 633–636 (1995). translation in Math. Notes 57(3–4), (1995), 440–442

    MathSciNet  Google Scholar 

  27. Ribes, L., Zalesskii, P.: Profinite Groups. Springer, Berlin (2010)

    Book  MATH  Google Scholar 

  28. Rowen, L.H.: Ring Theory, vol. I. Academic Press, Cambridge (1988)

    MATH  Google Scholar 

  29. Saltman, D.: Lectures on Division Algebras, CBMS Regional Conference Series in Mathematics 94, AMS (1998)

  30. Solian, A.: Theorey of Modules. Wiley, New York (1977)

    MATH  Google Scholar 

  31. Tignol, J. P., Wadsworth, A.: Value functions on simple algebras, and associated graded rings. Springer Monographs in Mathematics (2015)

  32. Zelmanov, E. I.: Lie algebras and torsion groups with identity. J. Combin. Alg. 1(3), 289–340 (2017)

    Article  MathSciNet  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Uzi Vishne.

Additional information

Presented by: Iain Gordon

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

The authors are partially supported by Israeli Science Foundation grants no. 1623/16 and 630/17.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Bar-On, T., Gilat, S., Matzri, E. et al. Locally Finite Central Simple Algebras. Algebr Represent Theor 26, 553–607 (2023). https://doi.org/10.1007/s10468-021-10103-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10468-021-10103-4

Mathematics Subject Classification (2010)

Navigation