Skip to main content
Log in

Wide Subcategories and Lattices of Torsion Classes

Algebras and Representation Theory Aims and scope Submit manuscript

Cite this article

Abstract

In this paper, we study the relationship between wide subcategories and torsion classes of an abelian length category \(\mathcal {A}\) from the point of view of lattice theory. Motivated by τ-tilting reduction of Jasso, we mainly focus on intervals \([\mathcal {U},\mathcal {T}]\) in the lattice \(\operatorname {\mathsf {tors}} \mathcal {A}\) of torsion classes in \(\mathcal {A}\) such that \(\mathcal {W}:=\mathcal {U}^{\perp } \cap \mathcal {T}\) is a wide subcategory of \(\mathcal {A}\); we call these intervals wide intervals. We prove that a wide interval \([\mathcal {U},\mathcal {T}]\) is isomorphic to the lattice \(\operatorname {\mathsf {tors}} \mathcal {W}\) of torsion classes in the abelian category \(\mathcal {W}\). We also characterize wide intervals in two ways: First, in purely lattice theoretic terms based on the brick labeling established by Demonet–Iyama–Reading–Reiten–Thomas; and second, in terms of the Ingalls–Thomas correspondences between torsion classes and wide subcategories, which were further developed by Marks–Šťovíček.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

References

  1. Adachi, T., Iyama, O., Reiten, I.: τ-tilting theory. Compos. Math. 150(3), 415–452 (2014)

    Article  MathSciNet  MATH  Google Scholar 

  2. Asai, S.: Semibricks, Int. Math. Res. Not. IMRN. 16, 4993–5054 (2020)

  3. Asai, S.: The wall-chamber structures of the real Grothendieck groups. Adv. Math. 381, 107615 (2021)

  4. Barnard, E., Carroll, A., Zhu, S.: Minimal inclusions of torsion classes. Algebr. Comb. 2(5), 879–901 (2019)

    MathSciNet  MATH  Google Scholar 

  5. Baumann, P., Kamnitzer, J., Tingley, P.: Affine Mirković-Vilonen polytopes. Publ. Math. Inst. Hautes Études Sci. 120, 113–205 (2014)

    Article  MathSciNet  MATH  Google Scholar 

  6. Brenner, S., Butler, M. C. R.: Generalizations of the Bernšteı̆n–Gel’fand–Ponomarev reflection functors, Representation theory, II (Proc. Second Internat. Conf., Carleton Univ., Ottawa, Ont., 1979), 103–169 Lecture Notes in Math, vol. 832. Springer, Berlin (1980)

  7. Bridgeland, T.: Stability conditions on triangulated categories. Ann. Math. (2) 166(2), 317–345 (2007)

    Article  MathSciNet  MATH  Google Scholar 

  8. Bridgeland, T.: Scattering diagrams, Hall algebras and stability conditions. Algebr. Geom. 4(5), 523–561 (2017)

    Article  MathSciNet  MATH  Google Scholar 

  9. Brüning, K.: Thick subcategories of the derived category of a hereditary algebra. Homology Homotopy Appl. 9(2), 165–176 (2007)

    Article  MathSciNet  MATH  Google Scholar 

  10. Brüstle, T., Smith, D., Treffinger, H.: Wall and Chamber Structure for finite-dimensional Algebras. Adv. Math. 354, 106746 (2019)

  11. Brüstle, T., Yang, D.: Ordered exchange graphs, Advances in representation theory of algebras, pp. 135–193, EMS Ser. Congr. Rep., Eur. Math. Soc. Zürich (2013)

  12. Demonet, L., Iyama, O., Jasso, G.: τ-tilting finite algebras, bricks, and g-vectors. Int. Math. Res. Not. IMRN. (3), 852–892 (2019)

  13. Demonet, L. , Iyama, O., Reading, N., Reiten, I., Thomas, H.: Lattice theory of torsion classes, arXiv:1711.01785v2

  14. Dickson, S. E.: A torsion theory for Abelian categories. Trans. Amer. Math. Soc. 121(1), 223–235 (1966)

    Article  MathSciNet  MATH  Google Scholar 

  15. Happel, D.: Triangulated categories in the representation theory of finite dimensional algebras. London Mathematical Society Lecture Note Series, vol. 119. Cambridge University Press (1988)

  16. Happel, D., Reiten, I., Smalø, S. O.: Tilting in abelian categories and quasitilted algebras. Mem. Amer. Math. Soc. 120(575) (1996)

  17. Hovey, M.: Classifying subcategories of modules. Trans. Amer. Math. Soc. 353(8), 3181–3191 (2001)

    Article  MathSciNet  MATH  Google Scholar 

  18. Ingalls, C., Thomas, H.: Noncrossing partitions and representations of quivers. Compos. Math. 145(6), 1533–1562 (2009)

    Article  MathSciNet  MATH  Google Scholar 

  19. Iyama, O., Reading, N., Reiten, I., Thomas, H.: Lattice structure of Weyl groups via representation theory of preprojective algebras. Compos. Math. 154(6), 1269–1305 (2018)

    Article  MathSciNet  MATH  Google Scholar 

  20. Jasso, G.: Reduction of τ-tilting modules and torsion pairs. Int. Math. Res. Not. IMRN 16, 7190–7237 (2015)

    Article  MathSciNet  MATH  Google Scholar 

  21. King, A. D.: Moduli of representations of finite dimensional algebras. Quart. J. Math. Oxford Ser. (2) 45(180), 515–530 (1994)

    Article  MathSciNet  MATH  Google Scholar 

  22. Koenig, S., Yang, D.: Silting objects, simple-minded collections, t-structures and co-t-structures for finite-dimensional algebras. Doc. Math. 19, 403–438 (2014)

    MathSciNet  MATH  Google Scholar 

  23. Marks, F., Šťovíček, J.: Torsion classes, wide subcategories and localisations. Bull. Lond. Math. Soc. 49(3), 405–416 (2017)

    Article  MathSciNet  MATH  Google Scholar 

  24. Mizuno, Y.: Classifying τ-tilting modules over preprojective algebras of Dynkin type. Math. Z. 277(3-4), 665–690 (2014)

    Article  MathSciNet  MATH  Google Scholar 

  25. Rickard, J.: Morita theory for derived categories. J. Lond. Math. Soc. (2) 39(3), 436–456 (1989)

    Article  MathSciNet  MATH  Google Scholar 

  26. Ringel, C. M.: Representations of K-species and bimodules. J. Algebra 41(2), 269–302 (1976)

    Article  MathSciNet  MATH  Google Scholar 

  27. Yurikusa, T.: Wide Subcategories are Semistable. Doc. Math. 23, 35–47 (2018)

    MathSciNet  MATH  Google Scholar 

Download references

Acknowledgements

The authors thank Aaron Chan, Laurent Demonet, Haruhisa Enomoto, Osamu Iyama, Gustavo Jasso and Jan Schröer for kind instructions and discussions. The second named author would like to thank the Mathematical Institute of the University of Bonn, where most of his work was done as part of his Master studies.

Funding

The first named author was supported by Japan Society for the Promotion of Science KAKENHI JP16J02249, JP19K14500 and JP20J00088.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Sota Asai.

Additional information

Presented by: Henning Krause

Data sharing statement

Data sharing is not applicable to this article as no datasets were generated or analysed during the current study.

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and Permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Asai, S., Pfeifer, C. Wide Subcategories and Lattices of Torsion Classes. Algebr Represent Theor 25, 1611–1629 (2022). https://doi.org/10.1007/s10468-021-10079-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10468-021-10079-1

Keywords

Navigation