Multiplicities of Some Maximal Dominant Weights of the \(\widehat {s\ell }(n)\)-Modules V (kΛ0)


For n ≥ 2 consider the affine Lie algebra \(\widehat {s\ell }(n)\) with simple roots {αi∣0 ≤ in − 1}. Let \(V(k{\Lambda }_{0}), k \in \mathbb {Z}_{\geq 1}\) denote the integrable highest weight \(\widehat {s\ell }(n)\)-module with highest weight kΛ0. It is known that there are finitely many maximal dominant weights of V (kΛ0). Using the crystal base realization of V (kΛ0) and lattice path combinatorics we examine the multiplicities of a large set of maximal dominant weights of the form \(k{\Lambda }_{0} - \lambda ^{\ell }_{a,b}\) where \( \lambda ^{\ell }_{a,b} = \ell \alpha _{0} + (\ell -b)\alpha _{1} + (\ell -(b+1))\alpha _{2} + {\cdots } + \alpha _{\ell -b} + \alpha _{n-\ell +a} + 2\alpha _{n - \ell +a+1} + {\ldots } + (\ell -a)\alpha _{n-1}\), and ka + b, \(a,b \in \mathbb {Z}_{\geq 1}\), \(\max \limits \{a,b\} \leq \ell \leq \left \lfloor \frac {n+a+b}{2} \right \rfloor -1 \). We obtain two formulae to obtain these weight multiplicities - one in terms of certain standard Young tableaux and the other in terms of certain pattern-avoiding permutations.

This is a preview of subscription content, access via your institution.


  1. 1.

    Frame, J.S., Robinson, G., de, B., Thrall, R.M.: The hook graphs of the symmetric groups. Can. J. Math. 6, 316–324 (1954)

    MathSciNet  Article  Google Scholar 

  2. 2.

    Fulton, W.: Young Tableaux: with Applications to Representation Theory and Geometry. Cambridge University Press, New York (1997)

    Google Scholar 

  3. 3.

    Jayne, R.L., Misra, K.C.: On multiplicities of maximal dominant weights of \(\widehat {sl}(n)\)-modules. Algebr. Represent. Th. 17, 1303–1321 (2014)

    Article  Google Scholar 

  4. 4.

    Jayne, R.L., Misra, K.C.: Lattice paths, young tableaux, and weight multiplicities. Ann. Combin. 22, 147–156 (2018)

    MathSciNet  Article  Google Scholar 

  5. 5.

    Jimbo, M., Misra, K.C., Miwa, T., Okado, M.: Combinatorics of representations of \(U_{q}\left (\widehat {sl}(n) \right )\) at q = 0. Commun. Math. Phys. 136, 543–566 (1991)

    Article  Google Scholar 

  6. 6.

    Kac, V.G.: Infinite-Dimensional Lie Algebras, 3rd edn. Cambridge University Press, New York (1990)

    Google Scholar 

  7. 7.

    Kim, J.S., Lee, K.-H., Oh, S.-J.: Weight multiplicities and Young tableaux through affine crystals Mem. Am. Math. Soc., to appear (2020)

  8. 8.

    Schensted, C.: Longest increasing and decreasing subsequences. Can. J. Math. 13, 179–191 (1961)

    MathSciNet  Article  Google Scholar 

  9. 9.

    Stanley, R.P.: Enumerative Combinatorics, vol. 2. Cambridge University Press, New York (1999)

    Google Scholar 

  10. 10.

    Tsuchioka, S.: Catalan numbers and level 2 weight structures of \(A^{(1)}_{p-1}\). RIMS Kǒkyǔroku Bessatsu B11, 145–154 (2009)

    MathSciNet  MATH  Google Scholar 

  11. 11.

    Tsuchioka, S., Watanabe, M.: Pattern avoidance seen in multiplicities of maximal weights of affine Lie algebra representations. Proc. Am. Math. Soc. 146, 15–28 (2018)

    MathSciNet  Article  Google Scholar 

Download references

Author information



Corresponding author

Correspondence to Rebecca L. Jayne.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

KCM: partially supported by Simons Foundation grant #636482

Presented by: Pramod Achar

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Jayne, R.L., Misra, K.C. Multiplicities of Some Maximal Dominant Weights of the \(\widehat {s\ell }(n)\)-Modules V (kΛ0). Algebr Represent Theor (2021).

Download citation


  • Affine Lie algebra
  • Crystal base
  • Lattice path
  • Young tableau
  • Pattern-avoiding permutation

Mathematics Subject Classification (2010)

  • Primary 17B67
  • 17B37
  • 17B10
  • Secondary 05A05
  • 05E10
  • 05A17