Modules Over Trusses vs Modules Over Rings: Direct Sums and Free Modules


Categorical constructions on heaps and modules over trusses are considered and contrasted with the corresponding constructions on groups and rings. These include explicit description of free heaps and free Abelian heaps, coproducts or direct sums of Abelian heaps and modules over trusses, and description and analysis of free modules over trusses. It is shown that the direct sum of two non-empty Abelian heaps is always infinite and isomorphic to the heap associated to the direct sum of the group retracts of both heaps and \(\mathbb {Z}\). Direct sum is used to extend a given truss to a ring-type truss or a unital truss (or both). Free modules are constructed as direct sums of a truss with itself. It is shown that only free rank-one module over a ring are free as modules over the associated truss. On the other hand, if a (finitely generated) module over a truss associated to a ring is free, then so is the corresponding quotient-by-absorbers module over this ring.

This is a preview of subscription content, log in to check access.


  1. 1.

    Baer, R.: Zur Einführung des Scharbegriffs. J. Reine Angew. Math. 160, 199–207 (1929)

    MathSciNet  MATH  Google Scholar 

  2. 2.

    Bergman, G.M.: An Invitation to General Algebra and Universal Constructions, 2nd edn. Springer, Cham (2015)

    Google Scholar 

  3. 3.

    Brzeziński, T.: Trusses: Between braces and rings. Trans. Amer. Math. Soc. 372, 4149–4176 (2019)

    MathSciNet  Article  Google Scholar 

  4. 4.

    Brzeziński, T.: Trusses: Paragons, ideals and modules. J. Pure Appl. Algebra 224, 106258 (2020)

    MathSciNet  Article  Google Scholar 

  5. 5.

    Burris, S., Sankappanavar, H.P.: A Course in Universal Algebra. Springer, Berlin (2012). The Millenium Edition (on-line),

    Google Scholar 

  6. 6.

    Cedó, F., Jespers, E., Okniński, J.: Braces and the Yang-Baxter equation. Commun. Math. Phys. 327, 101–116 (2014)

    MathSciNet  Article  Google Scholar 

  7. 7.

    Dorroh, J.L.: Concerning adjunctions to algebras. Bull. Amer. Math. Soc. 38, 85–88 (1932)

    MathSciNet  Article  Google Scholar 

  8. 8.

    Dudek, W.A.: Ternary quasigroups connected with the affine geometry. Algebras, Groups and Geometries 16, 329–354 (1999)

    MathSciNet  MATH  Google Scholar 

  9. 9.

    Guarnieri, L., Vendramin, L.: Skew braces and the Yang-Baxter equation. Math. Comp. 86, 2519–2534 (2017)

    MathSciNet  Article  Google Scholar 

  10. 10.

    Holdings, C.D., Lawson, M.V.: Wagner’s Theory of Generalised Heaps. Springer, Berlin (2017)

    Google Scholar 

  11. 11.

    Prüfer, H.: Theorie der Abelschen Gruppen. I. Grundeigenschaften. Math. Z. 20, 165–187 (1924)

    MathSciNet  Article  Google Scholar 

  12. 12.

    Rump, W.: Braces, radical rings, and the quantum Yang-Baxter equation. J. Algebra 307, 153–170 (2007)

    MathSciNet  Article  Google Scholar 

  13. 13.

    Suškevič, A.K.: Theory of Generalized Groups, Goc. Naučno-Techn. Izdat, Ukrainy, Kharkov (1937)

  14. 14.

    Schreier, O.: Die Untergruppen der Freien Gruppen. Abh. Math. Sem. Univ. Hamburg 5, 161–183 (1927)

    MathSciNet  Article  Google Scholar 

Download references


The research of Tomasz Brzeziński is partially supported by the National Science Centre, Poland, grant no. 2019/35/B/ST1/01115.

Author information



Corresponding author

Correspondence to Tomasz Brzeziński.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Presented by: Peter Littelmann

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Brzeziński, T., Rybołowicz, B. Modules Over Trusses vs Modules Over Rings: Direct Sums and Free Modules. Algebr Represent Theor (2020).

Download citation


  • Truss
  • Free heap
  • Free module
  • Direct sum

Mathematics Subject Classification (2010)

  • 16Y99
  • 08A99