Abstract
We present algebraic and geometric classifications of the 4-dimensional complex nilpotent assosymmetric algebras.
References
- 1.
Abdelwahab, H., Calderón, A.J., Kaygorodov, I.: The algebraic and geometric classification of nilpotent binary Lie algebras. International Journal of Algebra and Computation 29(6), 1113–1129 (2019)
- 2.
Adashev, J., Camacho, L., Omirov, B.: Central extensions of null-filiform and naturally graded filiform non-Lie Leibniz algebras. Journal of Algebra 479, 461–486 (2017)
- 3.
Alvarez, M.A.: The variety of 7-dimensional 2-step nilpotent Lie algebras. Symmetry 10(1), 26 (2018)
- 4.
Alvarez, M.A., Hernández, I., Kaygorodov, I.: Degenerations of Jordan superalgebras. Bulletin of the Malaysian Mathematical Sciences Society 42(6), 3289–3301 (2019)
- 5.
Beneš, T., Burde, D.: Classification of orbit closures in the variety of three-dimensional Novikov algebras. Journal of Algebra and its Applications 13, 2,1350081,33 (2014)
- 6.
Boers, A.: On assosymmetric rings. Indag. Math. 5(1), 9–27 (1994)
- 7.
Burde, D., Steinhoff, C.: Classification of orbit closures of 4–dimensional complex Lie algebras. Journal of Algebra 214(2), 729–739 (1999)
- 8.
Calderón Martín, A., Fernández Ouaridi, A., Kaygorodov, I.: The classification of n-dimensional anticommutative algebras with (n − 3)-dimensional annihilator. Communications in Algebra 47(1), 173–181 (2019)
- 9.
Calderón Martín, A., Fernández Ouaridi, A., Kaygorodov, I.: The classification of 2-dimensional rigid algebras, Linear and Multilinear Algebra. https://doi.org/10.1080/03081087.2018.1519009 (2018)
- 10.
Calderón Martín, A., Fernández Ouaridi, A., Kaygorodov, I.: The classification of bilinear maps with radical of codimension 2, (2018). arXiv:1806.07009
- 11.
Camacho, L., Kaygorodov, I., Lopatkin, V., Salim, M.: The variety of dual mock-Lie algebras, Communications in Mathematics, to appear. arXiv:1910.01484
- 12.
Cicalò, S., De Graaf, W., Schneider, C.: Six-dimensional nilpotent Lie algebras. Linear Algebra Appl. 436(1), 163–189 (2012)
- 13.
Darijani, I., Usefi, H: The classification of 5-dimensional p-nilpotent restricted Lie algebras over perfect fields, I. Journal of Algebra 464, 97–140 (2016)
- 14.
De Graaf, W.: Classification of 6-dimensional nilpotent Lie algebras over fields of characteristic not 2. Journal of Algebra 309(2), 640–653 (2007)
- 15.
De Graaf, W.: Classification of nilpotent associative algebras of small dimension. International Journal of Algebra and Computation 28(1), 133–161 (2018)
- 16.
Demir, I., Misra, K., Stitzinger, E.: On classification of four-dimensional nilpotent Leibniz algebras. Communications in Algebra 45(3), 1012–1018 (2017)
- 17.
Dzhumadildaev, A.: Assosymmetric algebras under Jordan product. Communications in Algebra 46(1), 1532–4125 (2018)
- 18.
Dzhumadildaev, A., Zhakhayev, B.: Free assosymmetric algebras as modules of groups. arXiv:1810.05254
- 19.
Fernández Ouaridi, A., Kaygorodov, I., Khrypchenko, M., Volkov, Yu.: Degenerations of nilpotent algebras. arXiv:1905.05361
- 20.
Gorshkov, I., Kaygorodov, I., Khrypchenko, M.: The algebraic classification of nilpotent Tortkara algebras. arXiv:1904.00845
- 21.
Gorshkov, I., Kaygorodov, I., Khrypchenko, M.: The geometric classification of Tortkara algebras. Communications in Algebra 48(1), 204–209 (2020)
- 22.
Gorshkov, I., Kaygorodov, I., Kytmanov, A., Salim, M: The variety of nilpotent Tortkara algebras. Journal of Siberian Federal University Mathematics & Physics 12(2), 173–184 (2019)
- 23.
Gorshkov, I., Kaygorodov, I., Popov, Yu.: Degenerations of Jordan algebras and Marginal algebras, Algebra Colloquium, 2019, to appear
- 24.
Grunewald, F., O’Halloran, J.: Varieties of nilpotent Lie algebras of dimension less than six. Journal of Algebra 112, 315–325 (1988)
- 25.
Grunewald, F., O’Halloran, J.: A Characterization of orbit closure and applications. Journal of Algebra 116, 163–175 (1988)
- 26.
Hegazi, A., Abdelwahab, H.: Classification of five-dimensional nilpotent Jordan algebras. Linear Algebra Appl. 494, 165–218 (2016)
- 27.
Hegazi, A., Abdelwahab, H.: Is it possible to find for any \(n,m \in \mathbb {N}\) a Jordan algebra of nilpotency type (n, 1,m)?. Beitrage zur Algebra und Geometrie 57(4), 859–880 (2016)
- 28.
Hegazi, A., Abdelwahab, H., Calderón Martín, A.: The classification of n-dimensional non-Lie Malcev algebras with (n − 4)-dimensional annihilator. Linear Algebra Appl. 505, 32–56 (2016)
- 29.
Hegazi, A., Abdelwahab, H., Calderón Martín, A.: Classification of nilpotent Malcev algebras of small dimensions over arbitrary fields of characteristic not 2. Algebras and Representation Theory 21(1), 19–45 (2018)
- 30.
Hentzel, I., Jacobs, D., Peresi, L.: A basis for free assosymmetric algebras. Journal of Algebra 183, 306–318 (1996)
- 31.
Ismailov, N., Kaygorodov, I., Volkov, Yu.: The geometric classification of Leibniz algebras. International Journal of Mathematics 29, 5,1850035 (2018)
- 32.
Ismailov, N., Kaygorodov, I., Volkov, Yu.: Degenerations of Leibniz and anticommutative algebras. Can. Math. Bull. 62(3), 539–549 (2019)
- 33.
Karimjanov, I., Kaygorodov, I., Khudoyberdiyev, K: The algebraic and geometric classification of nilpotent Novikov algebras. J. Geom. Phys. 143, 11–21 (2019)
- 34.
Karimjanov, I., Kaygorodov, I., Ladra, M.: Central extensions of filiform associative algebras, Linear and Multilinear Algebra. https://doi.org/10.1080/03081087.2019.1620674 (2019)
- 35.
Kaygorodov, I., Khrypchenko, M., Popov, Yu.: The algebraic and geometric classification of nilpotent terminal algebras. arXiv:1909.00358
- 36.
Kaygorodov, I., Lopes, S., Popov, Yu.: Degenerations of nilpotent associative commutative algebras, Communications in Algebra, to appear. https://doi.org/10.1080/00927872.2019.1691581
- 37.
Kaygorodov, I., Paez-Guillán, P., Voronin, V.: The algebraic and geometric classification of nilpotent bicommutative algebras, Algebras and Representation Theory, to appear. https://doi.org/10.1007/s10468-019-09944-x
- 38.
Kaygorodov, I., Popov, Yu., Pozhidaev, A., Volkov, Yu.: Degenerations of Zinbiel and nilpotent Leibniz algebras. Linear and Multilinear Algebra 66(4), 704–716 (2018)
- 39.
Kaygorodov, I., Popov, Yu., Volkov, Yu.: Degenerations of binary-Lie and nilpotent Malcev algebras. Communications in Algebra 46(11), 4929–4941 (2018)
- 40.
Kaygorodov, I., Volkov, Yu.: The variety of 2-dimensional algebras over an algebraically closed field. Can. J. Math. 71(4), 819–842 (2019)
- 41.
Kaygorodov, I., Volkov, Yu.: Complete classification of algebras of level two. Moscow Mathematical Journal 19(3), 485–521 (2019)
- 42.
Kaygorodov, I., Volkov, Yu.: Degenerations of Filippov algebras. arXiv:1911.00358
- 43.
Kim, H., Kim, K.: The structure of assosymmetric algebras. Journal of Algebra 319(6), 2243–2258 (2008)
- 44.
Kleinfeld, E.: Assosymmetric rings. Proceedings of the American Mathematical Society 8, 983–986 (1957)
- 45.
Mazzola, G.: The algebraic and geometric classification of associative algebras of dimension five. Manuscripta Mathematica 27(1), 81–101 (1979)
- 46.
Mazzola, G.: Generic finite schemes and Hochschild cocycles. Commentarii Mathematici Helvetici 55(2), 267–293 (1980)
- 47.
Pokrass, D., Rodabaugh, D.: Solvable assosymmetric rings are nilpotent. Proceedings of the American Mathematical Society 64(1), 30–34 (1977)
- 48.
Seeley, C.: Degenerations of 6-dimensional nilpotent Lie algebras over ℂ. Communications in Algebra 18, 3493–3505 (1990)
- 49.
Skjelbred, T., Sund, T.: Sur la classification des algebres de Lie nilpotentes. C. R. Acad. Sci. Paris Ser. A-B 286(5), A241–A242 (1978)
- 50.
Zusmanovich, P.: Central extensions of current algebras. Trans. Am. Math. Soc. 334(1), 143–152 (1992)
Acknowledgments
This work was supported by FAPESP 18/15712-0; RFBR 18-31-20004; AP05131123 ”Cohomological and structural problems of non-associative algebras”. The authors thank Prof. Dr. Mykola Khrypchenko for constructive discussions about degenerations of algebras.
Author information
Affiliations
Corresponding author
Additional information
Publisher’s Note
Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.
Presented by: Michel Brion
Appendix
Appendix
Rights and permissions
About this article
Cite this article
Ismailov, N., Kaygorodov, I. & Mashurov, F. The Algebraic and Geometric Classification of Nilpotent Assosymmetric Algebras. Algebr Represent Theor 24, 135–148 (2021). https://doi.org/10.1007/s10468-019-09935-y
Received:
Accepted:
Published:
Issue Date:
Keywords
- Assosymmetric algebras
- Nilpotent algebras
- Algebraic classification
- Central extension
- Geometric classification
- Degeneration
Mathematics Subject Classification 2010
- 17A30
- 17D25
- 14D06
- 14L30