Skip to main content

A Generalization of the Nakayama Functor


In this paper we introduce a generalization of the Nakayama functor for finite-dimensional algebras. This is obtained by abstracting its interaction with the forgetful functor to vector spaces. In particular, we characterize the Nakayama functor in terms of an ambidextrous adjunction of monads and comonads. In the second part we develop a theory of Gorenstein homological algebra for such Nakayama functor. We obtain analogues of several classical results for Iwanaga-Gorenstein algebras. One of our main examples is the module category Λ-Mod of a k-algebra Λ, where k is a commutative ring and Λ is finitely generated projective as a k-module.

This is a preview of subscription content, access via your institution.


  1. Auslander, M., Bridger, M.: Stable module theory memoirs of the American Mathematical Society, No. 94, American Mathematical Society, Providence, R.I. (1969)

  2. Auslander, M., Buchweitz, R.-O.: The homological theory of maximal Cohen-Macaulay approximations. Mém. Soc. Math. France (n.s.), (38). Colloque en l’honneur de Pierre Samuel (Orsay 1987) (1989)

  3. Auslander, M., Reiten, I.: Cohen-Macaulay and Gorenstein Artin algebras. In: Representation theory of finite groups and finite-dimensional algebras (Bielefeld, 1991), vol. 95 of Progr. Math., pp 221–245. Birkhäuser, Basel (1991)

  4. Barr, M., Beck, J.: Homology and standard constructions. In: Sem. on Triples and Categorical Homology Theory (ETH, Zürich, 1966/67), pp 245–335. Springer, Berlin (1969)

  5. Beligiannis, A., Krause, H.: Thick subcategories and virtually Gorenstein algebras. Illinois J. Math. 52(2), 551–562 (2008)

    MathSciNet  Article  Google Scholar 

  6. Borceux, F.: Handbook of categorical algebra. 2, vol. 51 of Encyclopedia of Mathematics and its Applications. Cambridge University Press, Cambridge (1994). Categories and structures

    Google Scholar 

  7. Buchweitz, R.-O.: Maximal Cohen-Macauley modules and Tate-cohomology over Gorenstein rings. Unpublished manuscript (1986)

  8. Chen, X.-W.: Gorenstein homological algebra of artin algebras. Postdoctoral report USTC (2010)

  9. Climent Vidal, J., Soliveres Tur, J.: Kleisli and Eilenberg-Moore constructions as parts of biadjoint situations. Extracta Math. 25(1), 1–61 (2010)

    MathSciNet  MATH  Google Scholar 

  10. Dell’Ambrogio, I., Stevenson, G., Stovicek, J.: Gorenstein homological algebra and universal coefficient theorems. Math Z. 287(3-4), 1109–1155 (2017)

    MathSciNet  Article  Google Scholar 

  11. Eilenberg, S., Moore, J.C.: Adjoint functors and triples. Illinois J. Math. 9, 381–398 (1965)

    MathSciNet  Article  Google Scholar 

  12. Enochs, E., Estrada, S., Garcia-Rozas, J. R.: Gorenstein categories and Tate cohomology on projective schemes. Math. Nachr. 281(4), 525–540 (2008)

    MathSciNet  Article  Google Scholar 

  13. Enochs, E.E., Jenda, O.M.G.: Gorenstein injective and projective modules. Math. Z. 220(4), 611–633 (1995)

    MathSciNet  Article  Google Scholar 

  14. Enochs, E.E., Jenda, O.M.G.: Relative homological algebra. Volume 1, vol. 30 of De Gruyter expositions in mathematics. Walter de Gruyter GmbH & Co KG, Berlin (2011). extended edition

    Book  Google Scholar 

  15. Enochs, E.E., Jenda, O.M.G.: Relative homological algebra. Volume 2, vol. 54 of De Gruyter expositions in mathematics. Walter de Gruyter GmbH & Co KG, Berlin (2011)

    Book  Google Scholar 

  16. Gelfand, S.I., Manin, Y.I: Methods of homological algebra. Springer Monographs in Mathematics, 2nd. Springer, Berlin (2003)

    Book  Google Scholar 

  17. Holm, H.: Gorenstein homological dimensions. J. Pure Appl. Algebra 189(1-3), 167–193 (2004)

    MathSciNet  Article  Google Scholar 

  18. Iyama, O.: Representation theory of orders. In: Algebra—representation theory (Constanta, 2000), vol. 28 of NATO Sci. Ser. II Math. Phys. Chem., pp 63–96. Kluwer Academic Publishers, Dordrecht (2001)

  19. Jørgensen, P.: Existence of Gorenstein projective resolutions and Tate cohomology. J. Eur. Math Soc. (JEMS) 9(1), 59–76 (2007)

    MathSciNet  Article  Google Scholar 

  20. Kelly, G.M.: Basic concepts of enriched category theory. Repr. Theory Appl. Categ., (10):vi+ 137. Reprint of the 1982 original. Cambridge University Press, Cambridge (2005). MR0651714

    Google Scholar 

  21. Lauda, A.D.: Frobenius algebras and ambidextrous adjunctions. Theory Appl. Categ. 16(4), 84–122 (2006)

    MathSciNet  MATH  Google Scholar 

  22. Mac Lane, S.: Categories for the working mathematician, vol. 5 of Graduate Texts in Mathematics, 2nd. Springer, New York (1998)

    MATH  Google Scholar 

  23. Shen, D.: A description of Gorenstein projective modules over the tensor products of algebras. arXiv:1602.00116 (2016)

  24. Stovicek, J.: Derived equivalences induced by big cotilting modules. Adv. Math. 263, 45–87 (2014)

    MathSciNet  Article  Google Scholar 

  25. Weibel, C.A.: An introduction to homological algebra, vol. 38 of Cambridge studies in advanced mathematics. Cambridge University Press, Cambridge (1994)

    Book  Google Scholar 

  26. Zaks, A.: Injective dimension of semi-primary rings. J. Algebra 13, 73–86 (1969)

    MathSciNet  Article  Google Scholar 

Download references


This is part of the authors PhD thesis. The author thanks Gustavo Jasso, Julian Kü lshammer, Rosanna Laking, and Jan Schröer for helpful discussions and comments and on a previous version of this paper. He would also like to thank the referee for helpful comments and suggestions. The work was made possible by the funding provided by the Bonn International Graduate School in Mathematics

Author information

Authors and Affiliations


Corresponding author

Correspondence to Sondre Kvamme.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Presented by: Henning Krause

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Kvamme, S. A Generalization of the Nakayama Functor. Algebr Represent Theor 23, 1319–1353 (2020).

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI:


  • Abelian category
  • Gorenstein homological algebra
  • Gorenstein ring
  • Homological algebra
  • Monad

Mathematics Subject Classification (2010)

  • 18E10
  • 16E65
  • 16D90