Skip to main content

On the Semi-centre of a Poisson Algebra


If \(\mathfrak {g}\) is a Lie algebra then the semi-centre of the Poisson algebra \(S(\mathfrak {g})\) is the subalgebra generated by \(\operatorname {ad}(\mathfrak {g})\)-eigenvectors. In this paper we abstract this definition to the context of integral Poisson algebras. We identify necessary and sufficient conditions for the Poisson semi-centre Asc to be a Poisson algebra graded by its weight spaces. In that situation we show the Poisson semi-centre exhibits many nice properties: the rational Casimirs are quotients of Poisson normal elements and the Poisson Dixmier–Mœglin equivalence holds for Asc.

This is a preview of subscription content, access via your institution.


  1. 1.

    Dixmier, J.: Enveloping Algebras, Grad. Stud Math., vol. 11. Amer. Math. Soc., Providence, RI (1996)

    Google Scholar 

  2. 2.

    Dixmier, J., Duflo, M., Vergne, M.: Sur la représentation coadjointe d’une algèbre de Lie. (French) Compositio Math. 29, 309–323 (1974)

    MATH  Google Scholar 

  3. 3.

    Brown, K., Gordon, I.: Poisson orders, symplectic reflection algebras and representation theory. J. Reine Angew. Math. 559, 193–216 (2003)

    MathSciNet  MATH  Google Scholar 

  4. 4.

    Goodearl, K., Launois, S.: The Dixmier-Moeglin equivalence and a Gel’fand-Kirillov problem for Poisson polynomial algebras. Bull. Soc. Math. France 139(1), 1–39 (2011)

    MathSciNet  Article  Google Scholar 

  5. 5.

    Joseph, A., Shafrir, D.: Polynomiality of invariants, unimodularity and adapted pairs. Transform. Groups 5, 851–882 (2010)

    MathSciNet  Article  Google Scholar 

  6. 6.

    Joseph, A.: On semi-invariants and index for biparabolic (seaweed) algebras. I. J. Algebra 305, 487–515 (2006)

    MathSciNet  Article  Google Scholar 

  7. 7.

    Joseph, A.: On semi-invariants and index for biparabolic (seaweed) algebras. II. J. Algebra 312, 158–193 (2007)

    MathSciNet  Article  Google Scholar 

  8. 8.

    Launois, S., Lecoutre, C.: Poisson deleting derivations algorithm and Poisson spectrum. Comm. Algebra 45, 1294–1313 (2017)

    MathSciNet  Article  Google Scholar 

  9. 9.

    Lecoutre, C.: Polynomial Poisson algebras: Gel’fand-Kirillov problem and Poisson spectra. Doctor of Philosophy (PhD) thesis, University of Kent. (2014)

  10. 10.

    Lecoutre, C., Sierra, S.: A new family of Poisson algebras and their deformations. Nagoya Math. J. 233(2019), 32–86 (2017)

    MathSciNet  MATH  Google Scholar 

  11. 11.

    Oh, S.-Q.: Symplectic ideals of Poisson algebras and the Poisson structure associated to quantum matrices. Comm. Algebra 27, 2163–2180 (1999)

    MathSciNet  Article  Google Scholar 

  12. 12.

    Ooms, A.: The polynomiality of the Poisson center and semi-center of a Lie algebra and Dixmier’s fourth problem. J. Algebra 477, 95–146 (2017)

    MathSciNet  Article  Google Scholar 

  13. 13.

    Rentschler, R., Vergne, M.: Sur le semi-centre du corps enveloppant d’une algèbre de Lie. Ann. Sci. Ecole Norm. Sup. 6, 389–405 (1973)

    MathSciNet  Article  Google Scholar 

  14. 14.

    Polischuk, A.: Algebraic geometry of Poisson brackets, Algebraic geometry, 7. J. Math. Sci. 84, 1413–1444 (1997)

    MathSciNet  Article  Google Scholar 

Download references


We would like to thank Professor David Jordan for carefully reading the first draft of this manuscript and making helpful suggestions. The second author is grateful for the support of EPSRC grant EP/N034449/1.

Author information



Corresponding author

Correspondence to Cesar Lecoutre.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Presented by: Michel Van den Bergh

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Lecoutre, C., Topley, L. On the Semi-centre of a Poisson Algebra. Algebr Represent Theor 23, 875–886 (2020).

Download citation


  • Poisson algebra
  • Semi-invariant theory
  • Poisson Dixmier–Moeglin equivalence