Skip to main content

Self-injective Cellular Algebras Whose Representation Type are Tame of Polynomial Growth

A Publisher Correction to this article was published on 04 May 2019

This article has been updated


We classify Morita equivalence classes of indecomposable self-injective cellular algebras which have polynomial growth representation type, assuming that the characteristic of the base field is different from two. This assumption on the characteristic is for the cellularity to be a Morita invariant property.

This is a preview of subscription content, access via your institution.

Change history

  • 04 May 2019

    The original version of this article unfortunately contains mistakes introduced during the production phase.


  1. 1.

    Asashiba, H.: The derived equivalence classification of representation-finite selfinjective algebras. J. Algebra 214, 182–221 (1999)

    MathSciNet  Article  Google Scholar 

  2. 2.

    Assem, I., Simson, D., Skowroński, A.: Elements of the Representation Theory of Associative Algebras, London Math. Soc. Student Texts 65, Cambridge University Press (2006)

  3. 3.

    Białkowski, J., Skowroński, A.: On tame weakly symmetric algebras having only periodic modules. Arch. Math. 81, 142–154 (2003)

    MathSciNet  Article  Google Scholar 

  4. 4.

    Bocian, R., Holm, T., Skowroński, A.: Derived equivalence classification of weakly symmetric algebras of Euclidean type. J. Pure Appl. Algebra 191, 43–74 (2004)

    MathSciNet  Article  Google Scholar 

  5. 5.

    Bocian, R., Skowroński, A.: Weakly symmetric algebras of Euclidean type. J. Reine Angew. Math. 580, 157–199 (2005)

    MathSciNet  Article  Google Scholar 

  6. 6.

    Cao, Y.: On the quasi-heredity and the semi-simplicity of cellular algebras. J. Algebra 267, 323–341 (2003)

    MathSciNet  Article  Google Scholar 

  7. 7.

    Geck, M.: Hecke algebras of finite type are cellular. Invent. Math. 169, 501–517 (2007)

    MathSciNet  Article  Google Scholar 

  8. 8.

    Graham, J., Lehrer, G.: Cellular algebras. Invent. Math. 123, 1–34 (1996)

    MathSciNet  Article  Google Scholar 

  9. 9.

    Kupisch, H., Scherzler, E.: Symmetric algebras of finite representation type, Representation Theory II. Proc. Second Internat. Conf., Carleton Univ., Ottawa 1979, Lecture notes in math. 832, pp. 328–368. Springer

  10. 10.

    König, S., Xi, C.C.: On the structure of cellular algebras, Algebras and modules II (Geiranger 1996), CMS Conf. Proc. 24, Amer. Math Soc., pp. 365–386 (1998)

  11. 11.

    König, S., Xi, C.C.: Cellular algebras: inflations and Morita equivalences. J. Lond. Math. Soc. 60, 700–722 (1999)

    MathSciNet  Article  Google Scholar 

  12. 12.

    König, S., Xi, C.C.: When is a cellular algebra quasi-hereditary. Math. Ann. 315, 281–293 (1999)

    MathSciNet  Article  Google Scholar 

  13. 13.

    König, S., Xi, C.C.: A self-injective cellular algebra is weakly symmetric. J. Algebra 228, 51–59 (2000)

    MathSciNet  Article  Google Scholar 

  14. 14.

    Mathas, A.: Iwahori-Hecke Algebras and Schur Algebras of the Symmetric Group, Chapter 2, University Lecture Series 15, Amer. Math. Soc. (1999)

  15. 15.

    Ohmatsu, M.: A Classification of Symmetric Cellular Algebras of Finite Representation Type (In Japanese). Master’s thesis, Shinshu Univ. (2014)

  16. 16.

    Skowroński, A.: Selfinjective algebras: finite and tame type, Trends in Representation Theory of Algebras and Related Topics, Contemp. Math. 406, Amer. Math Soc., pp. 169–238 (2006)

  17. 17.

    Waschbüsch, J.: On self-injective algebras of finite representation type. Monographs of Institute of Math. 14 UNAM Mexico (1983)

  18. 18.

    Xi, C.C.: Cellular algebras: Advanced school and conference on representation theory and related topics SMR1735/10, International Centre for Theoretical Physics (2006)

Download references


The first author is supported by the JSPS Grant-in-Aid for Scientific Research 15K04782 and the last author is supported by the JSPS Grant-in-Aid for Scientific Research 16K17565.

Author information



Corresponding author

Correspondence to R. Kase.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

The ​original ​version ​of ​this ​article ​was ​revised. The mistakes are on the incorrect cross-referencing of Theorem 6.8, Theorem 7.1, Theorem 7.16, Theorem 7.20, Proposition 5.4, Proposition 5.5, Proposition 6.2, Proposition 6.4, Proposition 6.5, Proposition 6.6, Proposition 6.7, Proposition 7.2, Proposition 7.4, Proposition 7.7, Proposition 7.9, Proposition 7.12, Proposition 7.14, Proposition 7.19, Lemma 5.3, Lemma 6.3, Lemma 7.6, Lemma 7.17, Lemma 7.18, Definition 7.3, Definition 7.5, Definition 7.8, Definition 7.10, Definition 7.13, Definition 7.15 found in sections 1, 5, 6, 7, 8. This is due to the change in the numbering of subsections 5.1, 6.1, 6.2, 6.3, 6.4, 7.1, 7.2, 7.3, and 7.4.

Presented by: Steffen Koenig

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Ariki, S., Kase, R., Miyamoto, K. et al. Self-injective Cellular Algebras Whose Representation Type are Tame of Polynomial Growth. Algebr Represent Theor 23, 833–871 (2020).

Download citation


  • Self-injective algebra
  • Cellular algebra
  • Domestic type
  • Polynomial growth