Skip to main content
Log in

Twisted Tensor Products of Kn with Km

  • Published:
Algebras and Representation Theory Aims and scope Submit manuscript

Abstract

We find three families of twisting maps of Km with Kn, where K is a field, and we make a detailed study of its properties. One of them is related to truncated quiver algebras, the second one consists of deformations of the first and the third one requires m = n and yields algebras isomorphic to Mn(K).

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Brzeziński, T., Majid, S.: Coalgebra bundles. Commun. Math. Phys. 191(2), 467–492 (1998). https://doi.org/10.1007/s002200050274. MR1604340

    Article  MathSciNet  Google Scholar 

  2. Brzeziński, T., Majid, S.: Quantum geometry of algebra factorisations and coalgebra bundles. Commun. Math. Phys. 213(3), 491–521 (2000). https://doi.org/10.1007/PL00005530. MR1785427

    Article  MathSciNet  Google Scholar 

  3. Cap, A., Schichl, H., Vanžura, J.: On twisted tensor products of algebras. Commun. Algebra 23(12), 4701–4735 (1995). https://doi.org/10.1080/00927879508825496. MR1352565

    Article  MathSciNet  Google Scholar 

  4. Cartier, P.: Produits tensoriels tordus. Exposé au Séminaire des groupes quantiques de l’ École Normale Supérieure, Paris (Unknown Month 1991)

  5. Caenepeel, S., Ion, B., Militaru, G., Zhu, S.: The factorization problem and the smash biproduct of algebras and coalgebras. Algebr. Represent. Theory 3(1), 19–42 (2000). https://doi.org/10.1023/A:1009917210863. MR1755802

    Article  MathSciNet  Google Scholar 

  6. Cibils, C.: Non-commutative duplicates of finite sets. J. Algebra Appl. 5(3), 361–377 (2006). https://doi.org/10.1142/S0219498806001776. MR2235816

    Article  MathSciNet  Google Scholar 

  7. Cortadellas, Ó., López Peña, J., Navarro, G: Factorization structures with a two-dimensional factor. J. Lond. Math. Soc. (2) 81(1), 1–23 (2010). https://doi.org/10.1112/jlms/jdp055. MR2580451

    Article  MathSciNet  Google Scholar 

  8. Gerstenhaber, M.: On the deformation of rings and algebras. Ann. Math. (2) 79, 59–103 (1964). MR0171807

    Article  MathSciNet  Google Scholar 

  9. Guccione, J.A., Guccione, J.J.: Hochschild homology of twisted tensor products. K-Theory 18(4), 363–400 (1999). https://doi.org/10.1023/A:1007890230081. MR1738899

    Article  MathSciNet  Google Scholar 

  10. Guccione, J.A., Guccione, J.J., Valqui, C.: Twisted planes. Commun. Algebra 38(5), 1930–1956 (2010). https://doi.org/10.1080/00927870903023105. MR2642035

    Article  MathSciNet  Google Scholar 

  11. Guccione, J.A., Guccione, J.J., Valqui, C.: Non commutative truncated polynomial extensions. J. Pure Appl. Algebra 216(11), 2315–2337 (2012). https://doi.org/10.1016/j.jpaa.2012.01.021. MR2927170

    Article  MathSciNet  Google Scholar 

  12. Jara, P., López Peña, J., Navarro, G., Ştefan, D.: On the classification of twisting maps between K n and K m. Algebr. Represent. Theory 14 (5), 869–895 (2011). https://doi.org/10.1007/s10468-010-9222-x. MR2832263

    Article  MathSciNet  Google Scholar 

  13. Jara Martínez, P., López Peña, J., Panaite, F., van Oystaeyen, F.: On iterated twisted tensor products of algebras. Internat. J. Math. 19(9), 1053–1101 (2008). https://doi.org/10.1142/S0129167X08004996. MR2458561

    Article  MathSciNet  Google Scholar 

  14. Kassel, C.: Quantum groups, Graduate Texts in Mathematics, vol. 155, p xii+ 531. Springer, New York (1995). MR1321145

    MATH  Google Scholar 

  15. López Peña, J., Navarro, G.: On the classification and properties of noncommutative duplicates. K-Theory 38(2), 223–234 (2008). https://doi.org/10.1007/s10977-007-9017-y. MR2366562

    Article  MathSciNet  Google Scholar 

  16. Majid, S.: Physics for algebraists: noncommutative and noncocommutative Hopf algebras by a bicrossproduct construction. J. Algebra 130 (1), 17–64 (1990). https://doi.org/10.1016/0021-8693(90)90099-A. MR1045735

    Article  MathSciNet  Google Scholar 

  17. Majid, S.: Algebras and Hopf algebras in braided categories. In: Advances in Hopf algebras. Lecture Notes in Pure and Appl. Math., vol. 158, Dekker, New York, 1994, pp. 55–105. MR1289422, Chicago (1992)

  18. Montgomery, S.: Hopf algebras and their actions on rings, CBMS Regional Conference Series in Mathematics, vol. 82, Published for the Conference Board of the Mathematical Sciences, Washington, DC; by the American Mathematical Society, Providence. MR1243637 (1993)

  19. Pierce, R.S.: Associative algebras, Graduate Texts in Mathematics, vol. 88. Springer, New York (1982). Studies in the History of Modern Science, 9. MR674652

    Google Scholar 

  20. Tambara, D.: The coendomorphism bialgebra of an algebra. J. Fac. Sci. Univ. Tokyo Sect. IA Math. 37(2), 425–456 (1990). MR1071429

    MathSciNet  MATH  Google Scholar 

  21. Van Daele, A., Van Keer, S.: The Yang-Baxter and pentagon equation. Compos. Math. 91(2), 201–221 (1994). MR1273649

    MathSciNet  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Juan J. Guccione.

Additional information

Presented by: Sarah Witherspoon

Christian Valqui was supported by PUCP-DGI-CAP-2016-1-0045.

Jorge A. Guccione and Juan J. Guccione were supported by UBACyT 20020150100153BA (UBA) and PIP 11220110100800CO (CONICET)

Appendix: Quasi-Standard Twisting Maps of K 3 with K 3

Appendix: Quasi-Standard Twisting Maps of K 3 with K 3

There is a bijection between the set of quivers that satisfy Conditions (1), (2) and (3) of Remark 10.5 with n = m =?3 and the set Stm of standard twisting maps of K3 with K3. Moreover, by Remark 7.8 we know that Stm splits in classes of isomorphic twisting maps. The first, second, fourth and fifth columns of the following table are self explanatory. In the third column we list a quiver for each one of the equivalent classes in Stm. In the sixth column we list the number of the standard twisting maps equivalent to the one determined by the quiver listed in the third column. Finally, in the last column we list all the quasi-standard twisting maps (which are not standard) associated with the standard twisting map determined in the third column. For this we use recursively the construction in Definition 10.7, verifying in each step that the conditions in item (2) of Proposition 10.11 are satisfied.

Table 1 Quasi-standard twisting maps of K3 with K3

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Arce, J., Guccione, J.A., Guccione, J.J. et al. Twisted Tensor Products of Kn with Km. Algebr Represent Theor 22, 1599–1651 (2019). https://doi.org/10.1007/s10468-018-9833-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10468-018-9833-1

Keywords

Mathematics Subject Classification (2010)

Navigation