Abstract
We study the principal subspaces of higher level standard \({A}_{2}^{(2)}\)-modules, extending earlier work in the level one case, by Calinescu, Lepowsky and Milas. We prove natural presentations of principal subspaces and also of certain related spaces. By using these presentations we obtain exact sequences, which yield recursions satisfied by the characters of the principal subspaces and related spaces. We conjecture a formula for a specialized character of the principal subspace, given by the Nahm sum of the inverse of the tadpole Cartan matrix.
This is a preview of subscription content, access via your institution.
References
Borcherds, R.E.: Vertex, algebras, Kac-Moody, algebras, and the Monster. Proc. Natl. Acad. Sci. USA 83, 3068–3071 (1986)
Butorac, M.: Combinatorial bases of principal subspaces for the affine Lie algebra of type \({B}_{2}^{(1)}\). J. Pure Appl. Algebra 218, 424–447 (2014)
Butorac, M.: Quasi-particle bases of principal subspaces for the affine Lie algebras of types \({B}_{l}^{(1)}\) and \({C}_{l}^{(1)}\). Glas. Mat. Ser. III(51), 59–108 (2016)
Butorac, M.: Quasi-particle bases of principal subspaces of the affine Lie algebra of type \({G}_{2}^{(1)}\). Glas. Mat. Ser. III(52), 79–98 (2017)
Butorac, M., Sadowski, C.: Combinatorial bases of principal subspaces of modules for twisted affine Lie algebras of type \({A}_{2l-1}^{(2)}\), \({D}_{l}^{(2)}\), \({E}_{6}^{(2)}\) and \({D}_{4}^{(3)}\), preprint
Calinescu, C., Lepowsky, J., Milas, A.: Vertex-algebraic structure of the principal subspaces of certain \({A}_{1}^{(1)}\)-modules, I: level one case. Internat. J. Math. 19, 71–92 (2008)
Calinescu, C., Lepowsky, J., Milas, A.: Vertex-algebraic structure of the principal subspaces of certain \({A}_{1}^{(1)}\)-modules, II: higher level case. J. Pure Appl. Algebra 212, 1928–1950 (2008)
Calinescu, C., Lepowsky, J., Milas, A.: Vertex-algebraic structure of the principal subspaces of level one modules for the untwisted affine Lie algebras of types A, D, E. J. Algebra 323, 167–192 (2010)
Calinescu, C., Lepowsky, J., Milas, A.: Vertex-algebraic structure of principal subspaces of standard \({A}_{2}^{(2)}\)-modules, I. Internat. J. Math. 25(1450063) (2014)
Capparelli, S., Lepowsky, J., Milas, A.: The Rogers-Ramanujan recursion and intertwining operators. Comm. Contemp. Math. 5, 947–966 (2003)
Capparelli, S., Lepowsky, J., Milas, A.: The Rogers-Selberg recursions, the Gordon-Andrews identities and intertwining operators. The Ramanujan Journal 12, 379–397 (2006)
Calinescu, C., Milas, A., Penn, M.: Vertex-algebraic structure of principal subspaces of basic \({A}_{2n}^{(2)}\)-modules. J. Pure Appl. Algebra 220, 1752–1784 (2016)
Feigin, B., Stoyanovsky, A.: Quasi-particles models for the representations of Lie algebras and geometry of flag manifold; arXiv:hep-th/9308079
Feigin, B., Stoyanovsky, A.: Functional models for representations of current algebras and semi-infinite Schubert cells (Russian). Funktsional Anal. i Prilozhen 28, 68–90 (1994). translation in: Funct. Anal. Appl. 28 (1994), 55–72
Frenkel, I., Huang, Y.-Z., Lepowsky, J.: On axiomatic approaches to vertex operator algebras and modules. Memoirs American Math. Soc. 104 (1993)
Frenkel, I., Lepowsky, J., Meurman, A.: Vertex Operator Calculus. In: Mathematical Aspects of String Theory, Proc. 1986 Conference, San Diego, ed. by S.-T. Yau, World Scientific, Singapore, pp 150–188 (1987)
Frenkel, I., Lepowsky, J., Meurman, A.: Vertex operator algebras and the monster. Pure and Applied Math., vol. 134 academic press (1988)
Jerkovic, M.: Recurrences and characters of Feigin-Stoyanovsky’s type subspaces. Vertex operator algebras and related areas. Contemp. Math. 497, 113–123 (2009)
Kac, V.: Infinite Dimensional Lie Algebras, 3rd edn. Cambridge University Press, Cambridge (1990)
Kožic, S.: Principal subspaces for quantum affine algebra \(u_{q}({A}_{n}^{(1)})\). J. Pure Appl. Algebra 218, 2119–2148 (2014)
Lepowsky, J.: Calculus of twisted vertex operators. Proc. Nat. Acad. Sci. USA 82, 8295–8299 (1985)
Lepowsky, J.: Perspectives on vertex operators and the Monster. in: Proceedings 1987 Symposium on the Mathematical Heritage of Hermann Weyl, Duke Univ. Proc. Symp. Pure Math., American Math. Soc. 48, 181–197 (1988)
Lepowsky, J., Li, H.: Introduction to Vertex Operator Algebras and Their Representations Progress in Mathematics, vol. 227. Birkhäuser, Boston (2003)
Li, H.-S.: Local systems of twisted vertex operators, vertex superalgebras and twisted modules. Contemp. Math. 193, 203–236 (1996)
Milas, A., Penn, M.: Lattice vertex algebras and combinatorial bases: general case and \(\mathcal {W}\)-algebras. New York J. Math. 18, 621–650 (2012)
Penn, M., Lattice Vertex Superalgebras, I: Presentation of the principal subspace. Commun. Algebra 42(3), 933–961 (2014)
Penn, M., Sadowski, C.: Vertex-algebraic structure of principal subspaces of basic \({D}_{4}^{(3)}\)-modules. The Ramanujan Journal 43(4), 571–617 (2017)
Penn, M., Sadowski, C.: Vertex-algebraic structure of principal subspaces of basic modules for twisted affine Kac-Moody Lie algebras of type \({A}_{2n + 1}^{(2)}, {D}_{n}^{(2)}, {E}_{6}^{(2)}\). J. Algebra 496, 242–291 (2018)
Penn, M., Sadowski, C., Webb, G.: Twisted Modules of Principal Subalgebras of Lattice Vertex Algebras, 40 pgs, submitted
Primc, M.: (K, r)-admissible configurations and intertwining operators. Contemp. Math 422, 425–434 (2007)
Sadowski, C.: Presentations of the principal suspaces of higher level \(\widehat {\mathfrak {sl}(3)}\)-modules. J. Pure Appl. Algebra 219, 2300–2345 (2015)
Sadowski, C.: Principal subspaces of \(\widehat {\mathfrak {sl}(n)}\)-modules. Int. J. Math. 26(08), 1550063 (2015)
Trupcevic, G.: Combinatorial bases of Feigin-Stoyanovsky’s type subspaces of level one standard modules for \(\tilde {\mathfrak {sl}}(l + 1, \mathbb {C})\). Comm. Algebra 38, 3913–3940 (2010)
Trupcevic, G.: Combinatorial bases of Feigin-Stoyanovsky’s type subspaces of higher-level standard \(\tilde {\mathfrak {sl}}(l + 1, \mathbb {C})\)-modules. J. Algebra 322, 3744–3774 (2009)
Acknowledgements
We thank the referee for providing us with constructive comments.
Author information
Authors and Affiliations
Corresponding author
Additional information
Presented by: Peter Littelmann
C.C was partially supported by the Simons Foundation Collaboration Grant for Mathematicians, and by PSC-CUNY Research Awards.
Rights and permissions
About this article
Cite this article
Calinescu, C., Penn, M. & Sadowski, C. Presentations of Principal Subspaces of Higher Level Standard \({A}_{2}^{(2)}\)-Modules. Algebr Represent Theor 22, 1457–1478 (2019). https://doi.org/10.1007/s10468-018-9828-y
Received:
Accepted:
Published:
Issue Date:
DOI: https://doi.org/10.1007/s10468-018-9828-y