Jellyfish Partition Categories


For each positive integer n, we introduce a monoidal category \(\mathcal {J}\mathcal {P}(n)\) using a generalization of partition diagrams. When the characteristic of the ground field is either 0 or at least n, we show \(\mathcal {J}\mathcal {P}(n)\) is monoidally equivalent to the full subcategory of Rep(An) whose objects are tensor powers of the natural n-dimensional permutation representation of the alternating group An.

This is a preview of subscription content, log in to check access.


  1. 1.

    Abrams, L.: Two-dimensional topological quantum field theories and Frobenius algebras. J. Knot Theory Ramifications 5(5), 569–587 (1996)

    MathSciNet  Article  Google Scholar 

  2. 2.

    Bloss, M.: The partition algebra as a centralizer algebra of the alternating group. Commun. Algebra 33(7), 2219–2229 (2005)

    MathSciNet  Article  Google Scholar 

  3. 3.

    Brauer, R.: On algebras which are connected with the semisimple continuous groups. Ann. Math. (2) 38(4), 857–872 (1937)

    MathSciNet  Article  Google Scholar 

  4. 4.

    Brundan, J., Ellis, A.: Monoidal supercategories ArXiv e-prints (2016)

  5. 5.

    Comes, J., Ostrik, V.: On blocks of Deligne’s category \(\underline {\operatorname {Re}}\!\operatorname {p}(s_{t})\). Adv. Math. 226(2), 1331–1377 (2011)

    MathSciNet  Article  Google Scholar 

  6. 6.

    Grood, C.: Brauer algebras and centralizer algebras for \({{SO}}(2n,\mathbb {C})\). J. Algebra 222(2), 678–707 (1999)

    MathSciNet  Article  Google Scholar 

  7. 7.

    Halverson, T., Ram, A.: Partition algebras. European J. Combin. 26(6), 869–921 (2005)

    MathSciNet  Article  Google Scholar 

  8. 8.

    Jones, V.: The Potts Model and the Symmetric Group. In: Subfactors (Kyuzeso, 1993), pp 259–267. World Sci. Publ., River Edge (1994)

  9. 9.

    Kock, J.: Frobenius algebras and 2D topological quantum field theories, London Mathematical Society Student Texts, vol. 59. Cambridge University Press, Cambridge (2004)

    Google Scholar 

  10. 10.

    Lehrer, G., Zhang, R.: The Brauer category and invariant theory. J. Eur. Math. Soc. 17(9), 2311–2351 (2015)

    MathSciNet  Article  Google Scholar 

  11. 11.

    Lehrer, G., Zhang, R.: Invariants of the special orthogonal group and an enhanced Brauer category. Enseign. Math. 63(1/2), 181–200 (2017)

    MathSciNet  MATH  Google Scholar 

  12. 12.

    Martin, P.: Potts models and related problems in statistical mechanics, series on advances in statistical mechanics, vol. 5. World Scientific Publishing Co. Inc., Teaneck (1991)

    Google Scholar 

  13. 13.

    Nebhani, A.: Semisimplicity of even Brauer algebras. J. Ramanujan Math. Soc. 29(3), 273–294 (2014)

    MathSciNet  MATH  Google Scholar 

Download references


I would like to thank Jonathan Kujawa for initiating this project by pointing out the paper [6], and for several useful conversations since. Part of this project was completed while I enjoyed a visit to the Max Planck Institute in Bonn. I would like to thank the institute for their hospitality.

Author information



Corresponding author

Correspondence to Jonathan Comes.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Presented by: Steffen Koenig

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Comes, J. Jellyfish Partition Categories. Algebr Represent Theor 23, 327–347 (2020).

Download citation


  • Jellyfish partition category
  • Partition algebra
  • Alternating group
  • Representation theory

Mathematics Subject Classification (2010)

  • 16S99
  • 05E99
  • 18D10