Finite Noncommutative Geometries Related to \(\mathbb {F}_{p}[x]\)


It is known that irreducible noncommutative differential structures over \(\mathbb {F}_{p}[x]\) are classified by irreducible monics m. We show that the cohomology \(H_{\text {dR}}^{0}(\mathbb {F}_{p}[x]; m)=\mathbb {F}_{p}[g_{d}]\) if and only if Trace(m)≠ 0, where \(g_{d}=x^{p^{d}}-x\) and d is the degree of m. This implies that there are \({\frac {p-1}{pd}}{\sum }_{k|d, p\nmid k}\mu _{M}(k)p^{\frac {d}{k}}\) such noncommutative differential structures (μM the Möbius function). Motivated by killing this zero’th cohomology, we consider the directed system of finite-dimensional Hopf algebras \(A_{d}=\mathbb {F}_{p}[x]/(g_{d})\) as well as their inherited bicovariant differential calculi Ω(Ad;m). We show that Ad = CdχA1 is a cocycle extension where \(C_{d}=A_{d}^{\psi }\) is the subalgebra of elements fixed under ψ(x) = x + 1. We also have a Frobenius-fixed subalgebra Bd of dimension \(\frac {1}{d} {\sum }_{k | d} \phi (k) p^{\frac {d}{k}}\) (ϕ the Euler totient function), generalising Boolean algebras when p = 2. As special cases, \(A_{1}\cong \mathbb {F}_{p}(\mathbb {Z}/p\mathbb {Z})\), the algebra of functions on the finite group \(\mathbb {Z}/p\mathbb {Z}\), and we show dually that \(\mathbb {F}_{p}\mathbb {Z}/p\mathbb {Z}\cong \mathbb {F}_{p}[L]/(L^{p})\) for a ‘Lie algebra’ generator L with eL group-like, using a truncated exponential. By contrast, A2 over \(\mathbb {F}_{2}\) is a cocycle modification of \(\mathbb {F}_{2}((\mathbb {Z}/2\mathbb {Z})^{2})\) and is a 1-dimensional extension of the Boolean algebra on 3 elements. In both cases we compute the Fourier theory, the invariant metrics and the Levi-Civita connections within bimodule noncommutative geometry.

This is a preview of subscription content, access via your institution.


  1. 1.

    Beggs, E.J., Majid, S.: Gravity induced from quantum spacetime. Class. Quantum. Grav. 31(39), 035020 (2014)

    MathSciNet  Article  Google Scholar 

  2. 2.

    Brzezinski, T.: Remarks on bicovariant differential calculi and exterior Hopf algebras. Lett. Math. Phys. 27, 287–300 (1993)

    MathSciNet  Article  Google Scholar 

  3. 3.

    Carlitz, L.: A theorem of Dickson on irreducible polynomials. Proc. AMS. 3, 693–700 (1952)

    MathSciNet  Article  Google Scholar 

  4. 4.

    Carlitz, L.: The Staudt-Clausen theorem. Math. Mag. 34, 131–146 (1961)

    MathSciNet  Article  Google Scholar 

  5. 5.

    Connes, A.: Noncommutative Geometry. Academic Press, Cambridge (1994)

    Google Scholar 

  6. 6.

    Dubois-Violette, M., Masson, T.: On the first-order operators in bimodules. Lett. Math. Phys. 37, 467–474 (1996)

    MathSciNet  Article  Google Scholar 

  7. 7.

    Dubois-Violette, M., Michor, P.W.: Connections on central bimodules in noncommutative differential geometry. J. Geom. Phys. 20, 218–232 (1996)

    MathSciNet  Article  Google Scholar 

  8. 8.

    Fine, N. J.: Binomial coefficients modulo a prime. Amer. Math. Monthly 54, 589–592 (1947)

    MathSciNet  Article  Google Scholar 

  9. 9.

    Kunz, E.: Kähler Differentials, Adv. Lec. Math. Series, p. 402. Springer Vieweg, Berlin (1986)

    Google Scholar 

  10. 10.

    Lang, S.: Algebra. 3rd edn. Addison-Wesley, Boston (1993)

  11. 11.

    Ling, S., Xing, C.: Coding Theory, A First Course. Cambridge University Press, Cambridge (2004)

    Google Scholar 

  12. 12.

    Lucas, E.: Théorie des fonctions numériques simplement pe?riodiques. Amer. J. Math. 1, 184–196 (1878). 197–240; 289–321

    MathSciNet  Article  Google Scholar 

  13. 13.

    Luschny, P.: Swinging Wilson quotients, entry, in The Online Encyclopedia of Integer Sequences

  14. 14.

    Mahler, K.: An interpolation series for continuous functions of a p-adic variable. J. Reine Angew. Math. 199, 23–34 (1958)

    MathSciNet  MATH  Google Scholar 

  15. 15.

    Majid, S.: A quantum groups primer. L.M.S Lect. Notes 292, 179 (2002)

    MathSciNet  MATH  Google Scholar 

  16. 16.

    Majid, S.: Foundations of Quantum Group Theory, Cambridge Univ Press (2000) paperback ed

  17. 17.

    Majid, S.: Cross product quantisation, nonAbelian cohomology and twisting of Hopf algebras. In: Proc. Generalised Symmetries, World Sci, Clausthal, Germany (1993)

  18. 18.

    Majid, S.: Quantum geometry of field extensions. J. Math. Phys. 40, 2311–2323 (1999)

    MathSciNet  Article  Google Scholar 

  19. 19.

    Majid, S.: Noncommutative Riemannian geometry of graphs. J. Geom. Phys. 69, 74–93 (2013)

    MathSciNet  Article  Google Scholar 

  20. 20.

    Majid, S.: Hodge star as braided Fourier transform. Alg. Repn. Theory 20, 695–733 (2017)

    MathSciNet  Article  Google Scholar 

  21. 21.

    Majid, S.: Noncommutative differential geometry. In: Bullet, S., Fearn, T., Smith, F. (eds.) LTCC Lecture Notes Series: Analysis and Mathematical Physics, pp. 139–176. World Science (2017)

  22. 22.

    Majid, S., Tao, W.-Q.: Generalised noncommutative geometry on finite groups and Hopf quivers. J. Noncomm. Geom. (41 pp), in press (2018)

  23. 23.

    Python/sage code:

  24. 24.

    Rojas-Leon, A.: Exponential sums with large automorphism group. Contemp. Math. 566, 43–64 (2012)

    MathSciNet  Article  Google Scholar 

  25. 25.

    Ruskey, F., Miers, C.R., Sadawa, J.: The number of irreducibles and Lyndon words with a given trace. Siam. J. Discrete 14, 240–245 (2001)

    MathSciNet  Article  Google Scholar 

  26. 26.

    Schauenburg, P.: Hopf algebra extensions and monoidal categories. In: New Directions in Hopf Algebras, vol. 43, pp. 321–381. MSRI Publications (2002)

  27. 27.

    Woronowicz, S.L.: Differential calculus on compact matrix pseudogroups (quantum groups). Commun. Math. Phys. 122, 125–170 (1989)

    MathSciNet  Article  Google Scholar 

Download references

Author information



Corresponding author

Correspondence to S. Majid.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Presented by: Sarah Witherspoon

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Bassett, M.E., Majid, S. Finite Noncommutative Geometries Related to \(\mathbb {F}_{p}[x]\). Algebr Represent Theor 23, 251–274 (2020).

Download citation


  • Noncommutative geometry
  • Finite field
  • Prime number
  • Hopf algebra
  • Quantum group
  • Bimodule Riemannian geometry
  • Galois extension
  • Cocycle
  • Boolean algebra

Mathematics Subject Classification (2010)

  • Primary 81R50
  • 58B32
  • 46L87