Skip to main content
Log in

Commutative Rings whose Proper Ideals are Serial

  • Published:
Algebras and Representation Theory Aims and scope Submit manuscript

Abstract

A result of Nakayama and Skornyakov states that a ring R is an Artinian serial ring if and only if every R-module is serial. This motivated us to study commutative rings for which every proper ideal is serial. In this paper, we determine completely the structure of commutative rings R of which every proper ideal is serial. It is shown that every proper ideal of R is serial, if and only if, either R is a serial ring, or R is a local ring with maximal ideal \({\mathcal {M}}\) such that there exist a uniserial module U and a semisimple module T with \({\mathcal {M}}=U\oplus T\). Moreover, in the latter case, every proper ideal of R is isomorphic to \(U^{\prime }\oplus T^{\prime }\), for some \(U^{\prime }\leq U\) and \(T^{\prime }\leq T\). Furthermore, it is shown that every proper ideal of a commutative Noetherian ring R is serial, if and only if, either R is a finite direct product of discrete valuation domains and local Artinian principal ideal rings, or R is a local ring with maximal ideal \({\mathcal {M}}\) containing a set of elements {w 1,…,w n } such that \({\mathcal {M}}=\bigoplus _{i=1}^{n} Rw_{i}\) with at most one non-simple summand. Moreover, another equivalent condition states that: there exists an integer n ≥ 1 such that every proper ideal of R is a direct sum of at most n uniserial R-modules. Finally, we discuss some examples to illustrate our results.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Asano, K.: ÜBer verallgemeinerte Abelsche Gruppen mit hyperkomplexen Operatorenring und ihre Anwedungen. Jpn. J. Math. 15, 231–253 (1939)

    Article  MATH  Google Scholar 

  2. Asano, K.: ÜBer Hauptidealringe mit Kettensatz. Osaka J. Math. 1, 52–61 (1949)

    MathSciNet  MATH  Google Scholar 

  3. Atiyah, M.F., Macdonald, I.G.: Introduction to Commutative Algebra, Addison-Wesley, Reading MA (1969)

  4. Behboodi, M., Ghorbani, A., Moradzadeh-Dehkordi, A.: Commutative Noetherian local rings whose ideals are direct sums of cyclic modules. J. Algebra 345, 257–265 (2011)

    Article  MathSciNet  MATH  Google Scholar 

  5. Behboodi, M., Heidari, S., Roointan-Isfahan, S.: Commutative rings whose proper ideals are direct sums of completely cyclic modules. J. Algebra. Appl 15, 1650160 [12 pages] (2016)

    Article  MathSciNet  MATH  Google Scholar 

  6. Behboodi, M., Shojaee, S.H.: Commutative local rings whose ideals are direct sums sums of cyclic modules. Algebr. Represent. Theor. 17, 971–982 (2014)

    Article  MathSciNet  MATH  Google Scholar 

  7. Cohen, I.S.: Commutative rings with restricted minimum condition. Duke Math. J. 17, 27–42 (1950)

    Article  MathSciNet  MATH  Google Scholar 

  8. Cohen, I.S., Kaplansky, I.: Rings for which every module is a direct sum of cyclic modules. Math. Z. 54, 97–101 (1951)

    Article  MathSciNet  MATH  Google Scholar 

  9. Dauns, J.: Modules and Rings. Cambridge University Press, Cambridge (1994)

    Book  MATH  Google Scholar 

  10. Eisenbud, D., Griffith, P.: The structure of serial rings. Pacific J. Math. 36, 109–121 (1971)

    Article  MathSciNet  MATH  Google Scholar 

  11. Facchini, A.: Krull-schmidt fails for serial modules. Trans. Amer. Math. Soc. 348, 4561–4575 (1996)

    Article  MathSciNet  MATH  Google Scholar 

  12. Fuchs, L., Salce, L.: Uniserial modules over valuation rings. J. Algebra 85, 14–31 (1983)

    Article  MathSciNet  MATH  Google Scholar 

  13. Griffith, P.: On the decomposition of modules and generalized left uniserial rings. Math. Ann. 184, 300–308 (1969/1970)

  14. Hungerford, T.W.: On the structure of principal ideal rings. Pacific J. Math. 25, 543–547 (1968)

    Article  MathSciNet  MATH  Google Scholar 

  15. Jain, S.K., Srivastava, A.A., Tuganbaev, A.: Cyclic modules and the structure of rings. Oxford University Press (2012)

  16. Kaplansky, I.: Elementary divisors and modules. Trans. Amer. Math. Soc. 66, 464–491 (1949)

    Article  MathSciNet  MATH  Google Scholar 

  17. Kaplansky, I.: Commutative rings. Allyn and Bacon, Boston (1970)

    MATH  Google Scholar 

  18. Köthe, G.: Verallgemeinerte Abelsche Gruppen mit hyperkomplexem Operatorenring. Math. Z. 39, 31–44 (1935)

    Article  MathSciNet  MATH  Google Scholar 

  19. Lam, T.Y.: Lectures on modules and rings. Springer-Verlag, New York (1998)

    Google Scholar 

  20. Nakayama, T.: On Frobeniusean algebras II. Ann. of Math. 42(2), 1–21 (1941)

    Article  MathSciNet  MATH  Google Scholar 

  21. Sharp, R.Y.: Steps In Commutative Algebra, 2nd edn. London Mathematical Society Student Texts, 51. Cambridge University Press, Cambridge (2000)

    Google Scholar 

  22. Shores, T., Lewis, W.J.: Serial modules and endomorphism rings. Duke Math. J. 41, 889–909 (1974)

    Article  MathSciNet  MATH  Google Scholar 

  23. Skornyakov, L.A.: When are all modules serial. Mat. Zametki 5, 173–182 (1969)

    MathSciNet  MATH  Google Scholar 

  24. Warfield, R.B. Jr.: Rings whose modules have nice decompositions. Math. Z. 125, 187–192 (1972)

    Article  MathSciNet  MATH  Google Scholar 

  25. Warfield, R.B. Jr.: Serial rings and finitely presented modules. J. Algebra 37, 187–222 (1975)

    Article  MathSciNet  MATH  Google Scholar 

  26. Wisbauer, R.: Foundations of module and ring theory. Gordon and Breach, Reading (1991)

    MATH  Google Scholar 

  27. Zariski, O., Samuel, P.: Commutative algebra, vol. I. Van Nostrand, Princeton (1960)

    Book  MATH  Google Scholar 

Download references

Acknowledgments

The authors would like to thank the referees for their helpful remarks and suggestions, which greatly enhanced the presentation. Also, the authors are grateful to Professor A. Haghany for his valuable comments, suggestions, and his careful editing of an earlier version of this paper.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to M. Behboodi.

Additional information

Presented by Yuri Drozd.

The research of the first author was in part supported by a grant from IPM (No. 95130413). This research is partially carried out in the IPM-Isfahan Branch.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Behboodi, M., Heidari, S. Commutative Rings whose Proper Ideals are Serial. Algebr Represent Theor 20, 1531–1544 (2017). https://doi.org/10.1007/s10468-017-9699-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10468-017-9699-7

Keywords

Mathematics Subject Classification (2010)

Navigation