Skip to main content

The Symmetric Invariants of Centralizers and Slodowy Grading II

Abstract

Let 𝔤 be a finite-dimensional simple Lie algebra of rank over an algebraically closed field 𝕜 of characteristic zero. We identify 𝔤 with 𝔤 through the Killing form of 𝔤. Let (e, h, f) be an 𝔰𝔩2-triple of 𝔤. Denote by 𝔤e the centralizer of e in 𝔤 and by \(\mathrm {S}(\mathfrak {g}^{e})^{\mathfrak {g}^{e}}\) the algebra of symmetric invariants of 𝔤e. We say that e is good if the nullvariety of some homogeneous elements of \(\mathrm {S}(\mathfrak {g}^{e})^{\mathfrak {g}^{e}}\) in (𝔤e) has codimension . In our previous work (Charbonnel and Moreau. Math. Zeitsch. 282, n° 1-2, 273–339 2016), we showed that if e is good then \(\mathrm {S}(\mathfrak {g}^{e})^{\mathfrak {g}^{e}}\) is a polynomial algebra. In this paper, we prove that the converse of the main result of Charbonnel and Moreau (Math. Zeitsch. 282, n° 1-2, 273–339 2016) is true. Namely, we prove that e is good if and only if for some homogeneous generating sequence q 1, … , q l of S(𝔤)𝔤, the initial homogeneous components of their restrictions to e + 𝔤f are algebraically independent over 𝕜.

This is a preview of subscription content, access via your institution.

References

  1. Bourbaki, N.: Algèbre commutative, Chapitre 10, Éléments de mathématiques. Masson, Paris (1998)

    MATH  Google Scholar 

  2. Charbonnel, J.-Y., Moreau, A.: The index of centralizers of elements of reductive Lie algebras. Doc. Math. 15, 387–421 (2010)

    MathSciNet  MATH  Google Scholar 

  3. Charbonnel, J.-Y., Moreau, A.: The symmetric invariants of centralizers and Slodowy grading. Math. Zeitschrift 282, n 1-2, 273–339 (2016)

    Article  MathSciNet  MATH  Google Scholar 

  4. Joseph, A., Shafrir, D.: Polynomiality of invariants, unimodularity and adapted pairs. Transform. Groups 15, 851–882 (2010)

    Article  MathSciNet  MATH  Google Scholar 

  5. Matsumura, H.: Commutative ring theory Cambridge studies in advanced mathematics, n°8. Cambridge University Press, Melbourne, Sydney (1986)

    Google Scholar 

  6. Mumford, D.: The Red Book of Varieties and Schemes, Lecture Notes in Mathematics, n° 1358. Springer-Verlag, Paris, Tokyo (1988)

    Google Scholar 

  7. Panyushev, D.I., Premet, A., Yakimova, O.: On symmetric invariants of centralizers in reductive Lie algebras. J. Algebra 313, 343–391 (2007)

    Article  MathSciNet  MATH  Google Scholar 

  8. Yakimova, O.: A counterexample to Premet’s and Joseph’s conjecture. Bullet. Lond. Math. Soc. 39, 749–754 (2007)

    Article  MathSciNet  MATH  Google Scholar 

  9. Yakimova, O.: Symmetric invariants of ℤ2-contractions and other semi-direct products, preprint (2016)

Download references

Acknowledgments

The second author is partially supported by the ANR Project GeoLie Grant number ANR-15-CE40-0012. We thank the referee for valuable comments and suggestions.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Anne Moreau.

Additional information

Presented by Vyjayanthi Chari.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Charbonnel, JY., Moreau, A. The Symmetric Invariants of Centralizers and Slodowy Grading II. Algebr Represent Theor 20, 1341–1363 (2017). https://doi.org/10.1007/s10468-017-9690-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10468-017-9690-3

Keywords

  • Symmetric invariant
  • Centralizer
  • Polynomial algebra
  • Slodowy grading

Mathematics Subject Classification (2010)

  • 17B35
  • 17B20
  • 13A50
  • 14L24