Skip to main content
Log in

Cell Decompositions of Quiver Flag Varieties for Nilpotent Representations of the Cyclic Quiver

  • Published:
Algebras and Representation Theory Aims and scope Submit manuscript

Abstract

Generalizing Schubert cells in type A and a cell decomposition of Springer fibres in type A found by L. Fresse we prove that varieties of complete flags in nilpotent representations of a cyclic quiver admit an affine cell decomposition parametrized by multi-tableaux. We show that they carry a torus operation with finitely many fixpoints. As an application of the cell decomposition we obtain a vector space basis of certain modules (for quiver Hecke algebras of nilpotent representations of this quiver), similar modules have been studied by Kato as analogues of standard modules.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Bialynicki-Birula, A.: Some theorems on actions of algebraic groups. Ann. Math. 98(2), 480–497 (1973)

    Article  MathSciNet  MATH  Google Scholar 

  2. Brundan, J., Kleshchev, A., McNamara, P.J.: Lecture Notes in Mathematics. Bd. 1578: Equivariant sheaves and functors. Springer-Verlag, Berlin (2012). 1994. - iv+139 S. - ISBN 3-540-58071-9 14

    Google Scholar 

  3. Bernstein, J., Lunts, V.: Lecture Notes in Mathematics. Bd. 1578: Equivariant sheaves and functors, p. iv+139 S. Berlin , Springer-Verlag (1994). ISBN 3–540–58071–9 14

    MATH  Google Scholar 

  4. Carter, R.W.: Finite groups of Lie type. New York, Wiley (1985). (Pure and Applied Mathematics (New York)). – xii+544 S. – Conjugacy classes and complex characters, A Wiley-Interscience Publication 2

    MATH  Google Scholar 

  5. Carrell, J.: Torus actions and cohomology. In: Algebraic Quotients. Torus Actions and Cohomology. The Adjoint Representation and the Adjoint Action Bd. 131, pp. 83–158. Springer, Berlin (2002). 2,7

  6. Chriss: Ginzburg: Representation Theory and Complex Geometry. Birkhäuser (1997)

  7. Cerulli Irelli, G., Fang, X., Feigin, E., Fourier, G., Reineke, M.: Linear degenerations of flag varieties. (2016). arXiv:1603.08395v1

  8. De Concini, C., Procesi, C.: Symmetric functions, conjugacy classes and the flag variety. Invent. Math. 64(2), 203–219 (1981). 2, 6

    Article  MathSciNet  MATH  Google Scholar 

  9. Douglass, J.M.: Irreducible components of fixed point subvarieties of flag varieties. Math. Nachr. 189, 107–120 (1998). 2

    Article  MathSciNet  MATH  Google Scholar 

  10. Fresse, L.: Betti numbers of Springer fibers in type A. In: J. Algebra, vol. 322, no. 7 pp. 2566–2579 (2009)

  11. Goresky, M. , Kottwitz, R., MacPherson, R.: Equivariant cohomology, Koszul duality, and the localization theorem. Invent. Math. 131(1), 25–83 (1998). ISSN 0020–9910 8

    Article  MathSciNet  MATH  Google Scholar 

  12. Guo, J.Y.: Erratum: “The Hall and composition algebra of a cyclic quiver” [Comm.Algebra 26 (1998), no.9, 2745–2766; MR1635913 (99e:16020)]. In: Comm. Algebra, vol. 27, no. 12, p. 6299 2 (1999)

  13. Hotta, R.: On Springer’s representations. J. Fac. Sci. Univ. Tokyo Sect. IA Math. 28(3), 863–876 (1981/1982). 2

  14. Joshua, R.: Modules over convolution algebras from equivariant derived categories. I. J. Algebra 203(2), 385–446 (1998). 14

    Article  MathSciNet  MATH  Google Scholar 

  15. Kato, S.: An algebraic study of extension algebras (2013). arXiv:12074640 [math.RT] 1, 14

  16. Kleshchev, A.: Affine highest weight categories and affine quasihereditary algebras (2014). arXiv:1405.3328v2 [math.RT] 14

  17. Lusztig, G.: Canonical bases arising from quantized enveloping algebras. J. Am. Math. Soc. 3, 447–498 (1990). 15

    Article  MathSciNet  MATH  Google Scholar 

  18. Macdonald, I.G.: Symmetric functions and Hall polynomials. The Clarendon Press, Oxford University Press, New York. viii+180 S. – Oxford Mathematical Monographs (1979). 8

  19. Mazorchuk, V.: Koszul duality for stratified algebras II. Standardly stratified algebras. J. Aust. Math. Soc. 89(1), 23–49 (2010). 14

    Article  MathSciNet  MATH  Google Scholar 

  20. McNamara, P.: Representations of Khovanov-Lauda-Rouquier algebras III: Symmetric Affine Type (2016). arXiv:1407.7304v3 1

  21. Melnikov, Pagnon: On intersections of orbital varieties and components of Springer fiber. J. Algebra 298, 1–14 (2006). 2

    Article  MathSciNet  MATH  Google Scholar 

  22. Pagnon, N.G.J.: On the Spaltenstein correspondence. Indag. Mathem. 15(1), 101–114 (2004). 2

    Article  MathSciNet  MATH  Google Scholar 

  23. Ringel: Tame algebras and integral quadratic forms. Bd. 1099. Springer-Verlag Lecture Notes in Mathematics (1984). 2

  24. Ringel, C.M.: The composition algebra of a cyclic quiver. Towards an explicit description of the quantum group of type n . Proc. Lond. Math. Soc. (3) 66(3), 507–537 (1993)

    Article  MathSciNet  MATH  Google Scholar 

  25. Schiffmann, O.: Quivers of type A, flag varieties and representation theory. In: Representations of finite dimensional algebras and related topics in Lie theory and geometry Bd. 40. Amer. Math. Soc., Providence, RI, pp. 453–479 (2004). 2, 15

  26. Spaltenstein, N.: The fixed point set of a unipotent transformation on the flag manifold. Indag. Math. 38(5), 542–456 (1976). 2, 4

    MathSciNet  MATH  Google Scholar 

  27. Spaltenstein, N.: On the fixed point set of a unipotent element on the variety of Borel subgroups. Topology 16, 203–204 (1977). 2

    Article  MathSciNet  MATH  Google Scholar 

  28. Springer, T.A.: Trigonometric sums, Green functions of finite groups and representations of Weyl groups. Invent. Math. 36, 173–207 (1976). 2

    Article  MathSciNet  MATH  Google Scholar 

  29. Springer, T.A.: A construction of representations of Weyl groups. Invent. Math. 44(3), S. 279–293 (1978). 2

    Article  MathSciNet  MATH  Google Scholar 

  30. Stroppel, Webster: Quiver Schur algebras and q-Fock space (2011). arXiv:1110.1115v1 [math.RA] 14

  31. Vargas, J.A.: Fixed points under the action of unipotent elements of SL n in the flag variety. Bol. Soc. Mat. Mexicana (2) 24(1), 1–14 (1979)

    MathSciNet  MATH  Google Scholar 

Download references

Acknowledgements

I would like to thank Peter Mc Namara for pointing out that the multiplicity spaces can be zero and therefore, Kato’s work can not directly be applied. Also I would like to thank the anonymous referee for a detailed reading. Furthermore, I would like to mention financial support from the CRC 701 in Bielefeld and the SPP 1388 (Schwerpunktprogramm Darstellungstheorie) by covering travel costs and research stays.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Julia Sauter.

Additional information

Presented by Peter Littelmann.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Sauter, J. Cell Decompositions of Quiver Flag Varieties for Nilpotent Representations of the Cyclic Quiver. Algebr Represent Theor 20, 1323–1340 (2017). https://doi.org/10.1007/s10468-017-9689-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10468-017-9689-9

Keywords

Mathematics Subject Classification (2010)

Navigation