Skip to main content
Log in

Whittaker Modules for the Insertion-Elimination Lie Algebra

  • Published:
Algebras and Representation Theory Aims and scope Submit manuscript

Abstract

This paper addresses the representation theory of the insertion-elimination Lie algebra, a Lie algebra that can be naturally realized in terms of tree-inserting and tree-eliminating operations on rooted trees. The insertion-elimination algebra admits a triangular decomposition in the sense of Moody and Pianzola, and thus it is natural to define Whittaker modules corresponding to a given algebra homomorphism. Among other results, we show that the standard Whittaker modules are simple under certain constraints on the corresponding algebra homomorphism.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Batra, P., Mazorchuk, V.: Blocks and modules for Whittaker pairs. J. Pure Appl. Algebra. 215, 1552–1568 (2011)

    Article  MathSciNet  MATH  Google Scholar 

  2. Christodoulopoulou, K.: Whittaker Modules for Heisenberg algebras and imaginary Whittaker modules for affine lie algebras. J. Algebra. 320, 2871–2890 (2008)

    Article  MathSciNet  MATH  Google Scholar 

  3. Connes, A., Kreimer, D.: Insertion and elimination: the doubly infinite Lie algebra of Feynman graphs. Ann. Henri Poincaré, 3(3), 411–433 (2002)

    Article  MathSciNet  MATH  Google Scholar 

  4. Foissy, L.: Finite Dimensional comodules over the Hopf algebra of rooted trees. J. Algebra 255, 89–120 (2002)

    Article  MathSciNet  MATH  Google Scholar 

  5. Hoffman, M.: Combinatorics Of rooted trees and Hopf algebras. Trans. Amer. Math. Soc. 355, 3795–3811 (2003)

    Article  MathSciNet  MATH  Google Scholar 

  6. Kostant, B.: On Whittaker Vectors and representation theory. Invent. Math. 48, 101–184 (1978)

    Article  MathSciNet  MATH  Google Scholar 

  7. Kreimer, D., Mencattini I.: Insertion and elimination Lie algebra: the Ladder case. Lett. Math. Phys. 67(1), 61–74 (2004)

    Article  MathSciNet  MATH  Google Scholar 

  8. Kreimer, D., Mencattini, I.: The structure of the Ladder insertion-elimination Lie algebra. Commun. Math. Phys. 259, 413–432 (2005)

    Article  MathSciNet  MATH  Google Scholar 

  9. Mathieu, O.: Classification Of simple graded Lie algebras of finite growth. Invent. Math. 108, 455–519 (1992)

    Article  MathSciNet  MATH  Google Scholar 

  10. Moody, R., Pianzola, A.: Lie Algebras with Triangular Decompositions Canadian Mathematical Society Series of Monographs and Advanced Texts. Wiley, New York (1995)

  11. Ondrus, M., Wiesner, E.: Whittaker modules for the Virasoro algebra. J. Algebra Appl. 8(3), 363–377 (2009)

    Article  MathSciNet  MATH  Google Scholar 

  12. Ondrus, M., Wiesner, E.: Whittaker Categories for the Virasoro algebra. Comm. Algebra 41(10), 3910–3930 (2013)

    Article  MathSciNet  MATH  Google Scholar 

  13. Ondrus, M., Wiesner, E.: Automorphisms And derivations of the insertion-elimination algebra and related graded Lie algebras. Lett. Math. Phys. 106 (7), 925–949 (2016)

    Article  MathSciNet  MATH  Google Scholar 

  14. Szczesny, M.: On The structure and representations of the insertion-elimination Lie algebra. Lett. Math. Phys. 84(1), 65–74 (2008)

    Article  MathSciNet  MATH  Google Scholar 

  15. Zhang, X., Tan, S., Lian, H.: Whittaker modules for the Schrodinger-Witt algebra. J. Math. Phys. 51(8), 083524–083541 (2010)

    Article  MathSciNet  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Emilie Wiesner.

Additional information

Presented by Vyjayanthi Chari.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ondrus, M., Wiesner, E. Whittaker Modules for the Insertion-Elimination Lie Algebra. Algebr Represent Theor 20, 843–856 (2017). https://doi.org/10.1007/s10468-016-9665-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10468-016-9665-9

Keywords

Mathematics Subject Classification (2010)

Navigation