Advertisement

Algebras and Representation Theory

, Volume 20, Issue 2, pp 433–468 | Cite as

Extending Representations of \(\mathfrak {sl}(2)\) to Witt and Virasoro Algebras

  • Francisco J. Plaza MartĂ­n
  • Carlos Tejero Prieto
Article

Abstract

We study when an \(\mathfrak {sl}(2)\)-representation extends to a representation of the Witt and Virasoro algebras. We give a criterion for extendability and apply it to certain classes of weight \(\mathfrak {sl}(2)\)-modules. For all simple weight \(\mathfrak {sl}(2)\)-modules and those in any of the abelian Krull-Schmidt categories of weight modules whose unique simple object is a dense module, we fully characterize which ones admit extensions, and we obtain explicit expressions for all of them. We also give partial results in the same direction for the abelian categories of weight modules which have two and three simple objects.

Keywords

Witt algebras Virasoro algebra Partial Lie algebras Extensions of representations Simple weight modules 

Mathematics Subject Classification (2010)

17B68 81R10 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Dijkgraaf, R., Fuji, H., Manabe, M.: The volume conjecture, perturbative knot invariants, and recursion relations for topological strings. Nuclear Phys. B 849(1), 166–211 (2011)MathSciNetCrossRefMATHGoogle Scholar
  2. 2.
    Dong, C., Lin, Z., Mason, G. In: K. Harada (ed.) : On vertex operator algebras as \(\mathfrak {sl}(2)\)-modules, Proc. on the Monster, Columbus. Walter de Gruyter, Berlin-New York (1993)Google Scholar
  3. 3.
    Dubrovin, B., Zhang, Y.: Frobenius manifolds and Virasoro constraints. Selecta Math. 5(4), 423–466 (1999)MathSciNetCrossRefMATHGoogle Scholar
  4. 4.
    Eguchi, T., Hori, K., Xiong, C.-S.: Quantum cohomology and Virasoro algebra. Phys. Lett. B 402(1-2), 71–80 (1997)MathSciNetCrossRefMATHGoogle Scholar
  5. 5.
    Eynard, B., Orantin, N.: Invariants of algebraic curves and topological expansion. Commun. Number. Theory Phys. 1(2), 347–452 (2007)MathSciNetCrossRefMATHGoogle Scholar
  6. 6.
    Frenkel, E., Ben-Zvi, D.: Vertex algebras and algebraic curves. Second edition. Mathematical Surveys and Monographs, vol. 88. American Mathematical Society, Providence (2004)Google Scholar
  7. 7.
    Iohara, K.: Koga, Yoshiyuki Representation theory of the Virasoro algebra. Springer-Verlag, London (2011)CrossRefGoogle Scholar
  8. 8.
    Juriev, D.V.: Complex Projective Geometry. Theor. Math. Phys. 101(3), 1387–1403 (1994)CrossRefGoogle Scholar
  9. 9.
    Juriev, D.V.: Approximate Representations And Virasoro Algebra. arXiv:9805001v3
  10. 10.
    Juriev, D.V.: Topics in hidden symmetries. V. arXiv:9611003v3
  11. 11.
    Kac, V.G.: Simple irreducible graded Lie algebras of finite growth. Math. USSR Izvestija 2(6), 1271–1311 (1968)CrossRefMATHGoogle Scholar
  12. 12.
    Kac, V.G., Raina, A.K.: Bombay lectures on highest weight representations of infinite-dimensional Lie algebras. Advanced Series in Mathematical Physics, vol. 2. World Scientific Publishing Co., Inc., Teaneck (1987)Google Scholar
  13. 13.
    Mathieu, O.: Classification of simple graded Lie algebras of finite growth. Invent. Math. 108, 455–519 (1992)MathSciNetCrossRefMATHGoogle Scholar
  14. 14.
    Mazorchuk, V.: Lectures on \(\mathfrak {sl}_{2}({\mathbb C})\)-modules. Imperial College Press, London (2010)Google Scholar
  15. 15.
    Patera, J., Zassenhaus, H.: The Higher Rank Virasoro Algebras. Commun. Math. Phys. 136, 1–14 (1991)MathSciNetCrossRefMATHGoogle Scholar
  16. 16.
    Plaza Martin, F.J.: Representations of the Witt Algebra and Gl(n)–Opers. Lett. Math. Phys. 103(10), 1079–1101 (2013)MathSciNetCrossRefMATHGoogle Scholar
  17. 17.
    Plaza Martin, F.J.: Algebro-geometric solutions of the generalized Virasoro constraints. SIGMA Symmetry Integrability Geom. Methods Appl. 11 (2015), Paper 052Google Scholar
  18. 18.
    Reutenauer, C.: Free Lie Algebras. Clarendon Press, Oxford (1993)MATHGoogle Scholar
  19. 19.
    Zhdanov, R., Huang, Q.: On realizations of the Virasoro algebra. arXiv:1310.2846v1
  20. 20.
    Plaza MartĂ­n, F.J., Tejero Prieto, C.: Construction of simple non-weight (2)-modules of arbitrary rank. To appear in Journal of AlgebraGoogle Scholar

Copyright information

© Springer Science+Business Media Dordrecht 2016

Authors and Affiliations

  1. 1.Departamento de MatemĂĄticas and IUFFYMUniversidad de SalamancaSalamancaSpain

Personalised recommendations