Skip to main content
Log in

Extended Local Cohomology and Local Homology

  • Published:
Algebras and Representation Theory Aims and scope Submit manuscript

Abstract

We present an in-depth exploration of the module structures of local (co)homology modules (moreover, for complexes) over the completion \(\widehat {R}^{\mathcal {a}}\) of a commutative noetherian ring R with respect to a proper ideal \(\mathcal {a}\). In particular, we extend Greenlees-May Duality and MGM Equivalence to track behavior over \(\widehat {R}^{\mathcal {a}}\), not just over R. We apply this to the study of two recent versions of homological finiteness for complexes, and to certain isomorphisms, with a view toward further applications. We also discuss subtleties and simplifications in the computations of these functors.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Alonso Tarrío, L., Jeremías López, A., Lipman, J.: Local homology and cohomology on schemes. Ann. Sci. École Norm. Sup. (4)30(1), 1–39 (1997). MR 1422312 (98d:14028)

    MathSciNet  MATH  Google Scholar 

  2. Avramov, L.L., Foxby, H.-B.: Homological dimensions of unbounded complexes. J. Pure Appl. Algebra 71, 129–155 (1991). MR 93g:18017

    Article  MathSciNet  MATH  Google Scholar 

  3. Avramov, L.L., Foxby, H.-B., Halperin, S.: Differential graded homological algebra, in preparation

  4. Benson, D., Iyengar, S.B., Krause, H.: Local cohomology and support for triangulated categories. Ann. Sci. Éc. Norm. Supér. (4)41(4), 573–619 (2008). MR 2489634 (2009k:18012)

    MathSciNet  MATH  Google Scholar 

  5. Benson, D., Iyengar, S.B., Krause, H.: Colocalizing subcategories and cosupport. J. Reine Angew. Math. 673, 161–207 (2012). MR 2999131

    MathSciNet  MATH  Google Scholar 

  6. Chen, X.-W., Iyengar, S.B.: Support and injective resolutions of complexes over commutative rings. Homology, Homotopy Appl. 12(1), 39–44 (2010). MR 2594681 (2011b:13035

    Article  MathSciNet  MATH  Google Scholar 

  7. Christensen, L.W., Foxby, H.-B., Holm, H.: Derived category methods in commutative algebra, in preparation

  8. Enochs, E.E., Jenda, O.M.G.: Relative homological algebra, de Gruyter Expositions in Mathematics 30 (2000). MR 1753146 (2001h:16013)

  9. Foxby, H.-B.: Bounded complexes of flat modules. J. Pure Appl. Algebra 15, 149–172 (2). MR 535182 (83c:13008)

  10. Frankild, A.: Vanishing of local homology. Math. Z. 244(3), 615–630 (2003). MR 1992028 (2004d:13027)

    MathSciNet  MATH  Google Scholar 

  11. Frankild, A., Sather-Wagstaff, S.: Reflexivity and ring homomorphisms of finite flat dimension. Comm. Algebra 35(2), MR 2294611 (2007)

    Article  MathSciNet  MATH  Google Scholar 

  12. Greenlees, J.P.C., May, J.P.: Derived functors of I-adic completion and local homology. J. Algebra 149(2), 438–453 (1992). MR 1172439 (93h:13009)

    Article  MathSciNet  MATH  Google Scholar 

  13. Hartshorne, R.: Residues and duality, Lecture Notes in Mathematics, No. 20. Springer, Berlin (1966). MR 36 #5145

    Google Scholar 

  14. Hartshorne, R.: Local cohomology, A seminar given by A. Grothendieck, Harvard University, Fall, vol. 1961 (1967). MR 0224620 (37 #219)

  15. Hartshorne, R.: Affine duality and cofiniteness. Invent. Math. 9, 145–164 (1969/1970). MR 0257096 (41 #1750)

  16. Kawasaki, K.-i.: On a category of cofinite modules which is Abelian. Math. Z. 269(1–2), 587–608 (2011). MR 2836085 (2012h:13026)

    Article  MathSciNet  MATH  Google Scholar 

  17. Kawasaki, K.-i.: On a characterization of cofinite complexes. Addendum to “On a category of cofinite modules which is Abelian”. Math. Z. 275(1–2), 641–646 (2013). MR 3101824

    Article  MathSciNet  MATH  Google Scholar 

  18. Lipman, J.: Lectures on local cohomology and duality, Local cohomology and its applications (Guanajuato, 1999), Lecture Notes in Pure and Appl. Math., vol. 226, pp 39–89. Dekker, New York (2002). MR 1888195 (2003b:13027)

  19. Matlis, E.: The Koszul complex and duality. Comm. Algebra 1, 87–144 (1974). MR 0344241 (49 #8980)

    Article  MathSciNet  MATH  Google Scholar 

  20. Matlis, E.: The higher properties of R-sequences. J. Algebra 50(1), 77–112 (1978). MR 479882 (80a:13013)

    Article  MathSciNet  MATH  Google Scholar 

  21. Melkersson, L.: Modules cofinite with respect to an ideal. J. Algebra 285(2), MR 2125457 (2006i:13033) (2005)

    Article  MathSciNet  Google Scholar 

  22. Ogoma, T.: Cohen Macaulay factorial domain is not necessarily Gorenstein. Mem. Fac. Sci. Kôchi Univ. Ser. A Math. 3, 65–74 (1982). MR 643928 (83e:13026)

    MathSciNet  MATH  Google Scholar 

  23. Porta, M., Shaul, L., Yekutieli, A.: On the homology of completion and torsion. Algebr. Represent. Theory 17(1), MR 3160712 (2014)

    Article  MathSciNet  MATH  Google Scholar 

  24. Porta, M., Shaul, L., Yekutieli, A.: Cohomologically cofinite complexes. Comm. Algebra 43(2), MR 3274024 (2015)

    Article  MathSciNet  MATH  Google Scholar 

  25. Porta, M., Shaul, L., Yekutieli, A.: Erratum to: on the homology of completion and torsion. Algebr. Represent. Theory 18(5), MR 3422477 (2015)

    Article  MathSciNet  MATH  Google Scholar 

  26. Sather-Wagstaff, S., Wicklein, R.: Adic finiteness: bounding homology and applications, preprint, arXiv:1602.03225 (2016)

  27. Sather-Wagstaff, S., Wicklein, R. Adic Foxby classes, preprint, arXiv:1602.03227 (2016)

  28. Sather-Wagstaff, S., Wicklein, R.: Adic semidualizing complexes, preprint, arXiv:1506.07052 (2015)

  29. Sather-Wagstaff, S., Wicklein, R.: Adically finite chain complexes, preprint, arXiv:1602.03224 (2016)

  30. Sather-Wagstaff, S., Wicklein, R.: Support and adic finiteness for complexes, Comm. Algebra, to appear, arXiv:1401.6925

  31. Shaul, L.: Adic reduction to the diagonal and a relation between cofiniteness and derived completion, preprint, arXiv:1602.03874 (2016)

  32. Shaul, L.: Hochschild cohomology commutes with adic completion, preprint, arXiv:1505.04172 (2015)

  33. Shaul, L.: Tensor product of dualizing complexes over a field, preprint, arXiv:1412.3759 (2014)

  34. Simon, A.-M.: Some homological properties of complete modules. Math. Proc. Cambridge Philos. Soc. 108(2), 231–246 (1990). MR 1074711 (91k:13008)

    Article  MathSciNet  MATH  Google Scholar 

  35. Spaltenstein, N.: Resolutions of unbounded complexes. Compositio Math. 65(2), 121–154 (1988). MR 932640 (89m:18013)

    MathSciNet  MATH  Google Scholar 

  36. The Stacks Project Authors: shape stacks project, http://stacks.math.columbia.edu(2016)

  37. Verdier, J.-L.: Catégories dérivées, SGA 4\(\frac {1}{2}\), Lecture Notes in Mathematics, vol. 569, pp. 262–311. Springer, Berlin (1977). MR 57 #3132

  38. Verdier, J.-L.: Des catégories dérivées des catégories abéliennes. Astérisque 1996(239), xii+253 (1997). With a preface by Luc Illusie, Edited and with a note by Georges Maltsiniotis. MR 98c:18007

    MathSciNet  Google Scholar 

  39. Yekutieli, A.: A separated cohomologically complete module is complete. Comm. Algebra 43(2), 616–622 (2015). MR 3274025

    Article  MathSciNet  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Sean Sather-Wagstaff.

Additional information

Presented by Henning Krause.

Sean Sather-Wagstaff was supported in part by a grant from the NSA

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Sather-Wagstaff, S., Wicklein, R. Extended Local Cohomology and Local Homology. Algebr Represent Theor 19, 1217–1238 (2016). https://doi.org/10.1007/s10468-016-9616-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10468-016-9616-5

Keywords

Mathematics Subject Classification (2010)

Navigation