Skip to main content
Log in

Non-Archimedean Duality: Algebras, Groups, and Multipliers

  • Published:
Algebras and Representation Theory Aims and scope Submit manuscript

Abstract

We develop a duality theory for multiplier Banach-Hopf algebras over a non-Archimedean field 𝕂. As examples, we consider algebras corresponding to discrete groups and zero-dimensional locally compact groups with 𝕂-valued Haar measure, as well as algebras of operators generated by regular representations of discrete groups.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Bosch, S., Güntzer, U., Remmert, R.: Non-Archimedean Analysis. Springer, Berlin (1984)

    Book  MATH  Google Scholar 

  2. Daws, M.: Multipliers, self-indiced and dual Banach algebras. Dissert. Math. 470, 62 (2010)

    Article  MathSciNet  MATH  Google Scholar 

  3. Diarra, B.: La dualité de Tannaka dans les corps valués ultramétriques complets. C. R. Acad. Sci. Paris, Sér. A 279(26), 907–909 (1974)

    MathSciNet  MATH  Google Scholar 

  4. Diarra, B.: Sur quelques représentations p-adiques de \(\mathbb Z_{p}\). Indag. Math. 41, 481–493 (1979)

    MathSciNet  MATH  Google Scholar 

  5. Diarra, B.: Algèbres de Hopf et fonctions presque périodiques ultramétriques. Rivista di Mat. Pura ed Appl. 17, 113–132 (1996)

    MathSciNet  Google Scholar 

  6. Doran, R.S., Wichmann, J.: Approximate identities and factorization in Banach modules. Lect. Notes Math. 768, 305 (1979)

    MathSciNet  MATH  Google Scholar 

  7. Hewitt, E., Ross, K.A.: Abstract Harmonic Analysis, vol. 1. Springer, Berlin (1963)

    Book  MATH  Google Scholar 

  8. Johnson, B.E.: An introduction to the theory of centralizers. Proc. London Math. Soc. 14, 299–320 (1964)

    Article  MathSciNet  MATH  Google Scholar 

  9. Katsaras, A.K., Beloyiannis, A.: Tensor products of non-Archimedean weighted spaces of continuous functions. Georgian Math. J. 6(1), 33–44 (1999)

    Article  MathSciNet  MATH  Google Scholar 

  10. Kisyński, J.: On Cohen’s proof of the factorization theorem. Ann. Polon. Math. 75(2), 177–192 (2000)

    MathSciNet  MATH  Google Scholar 

  11. Kochubei, A.N.: On some classes of non-Archimedean operator algebras. Contemp. Math. 596, 133–148 (2013)

    Article  MathSciNet  MATH  Google Scholar 

  12. Kochubei, A.N.: Non-Archimedean group algebras with Baer reductions. Algebras Represent. Theory 17, 1861–1867 (2014)

    Article  MathSciNet  MATH  Google Scholar 

  13. Kustermans, J., Vaes, S.: Locally compact quantum groups. Ann. Sci. École Norm. Sup. 33, 837–934 (2000)

    MathSciNet  MATH  Google Scholar 

  14. Kustermans, J., Vaes, S.: Locally compact quantum groups in the von Neumann algebraic setting. Math. Scand. 92, 68–92 (2003)

    MathSciNet  MATH  Google Scholar 

  15. Monna, A.F., Springer, T.A.: Intégration non-archimédienne. Indag. Math. 25, 634–653 (1963)

    Article  MathSciNet  MATH  Google Scholar 

  16. Perez-Garcia, C., Schikhof, W.H.: Locally Convex Spaces over Non-Archimedean Valued Fields. Cambridge University Press, Cambridge (2010)

    Book  MATH  Google Scholar 

  17. van Rooij, A.C.M.: Non-Archimedean Functional Analysis. Marcel Dekker, New York (1978)

    MATH  Google Scholar 

  18. van Rooij, A.C.M., Schikhof, W. H.: Group representations in non-Archimedean Banach spaces. Bull. Soc. Math. France. Supplement Mémoire 39-40, 329–340 (1974)

    MathSciNet  MATH  Google Scholar 

  19. Schikhof, W.H.: Non-Archimedean Harmonic Analysis. Thesis, Nijmegen (1967)

    MATH  Google Scholar 

  20. Schikhof, W.H.: Non-Archimedean representations of compact groups. Compositio Math 23, 215–232 (1971)

    MathSciNet  MATH  Google Scholar 

  21. Serre, J.-P.: Endomorphismes complètement continus des espaces de Banach p-adiques. Publ. Math. IHES 12, 69–85 (1962)

    Article  Google Scholar 

  22. Soibelman, Y.: Quantum p-adic spaces and quantum p-adic groups. In: Geometry and Dynamics of Groups and Spaces, Progr. Math., vol. 265, pp. 697–719. Birkhäuser, Basel (2008)

  23. Sun, M.: Multiplier Hopf Algebras and Duality. Thesis. University of Windsor, Ontario, Canada. http://scholar.uwindsor.ca/etd/352 (2011)

  24. Timmermann, Th.: An Invitation to Quantum Groups and Duality. European Mathematical Society, Zürich (2008)

    Book  MATH  Google Scholar 

  25. Vaes, S., Van Daele, A.: Hopf C -algebras. Proc. London Math. Soc. 82, 337–384 (2001)

    Article  MathSciNet  MATH  Google Scholar 

  26. Van Daele, A.: Multiplier Hopf algebras. Trans. Amer. Math. Soc. 342, 917–932 (1994)

    Article  MathSciNet  MATH  Google Scholar 

  27. Van Daele, A.: An algebraic framework for group duality. Adv. Math. 140, 323–366 (1998)

    Article  MathSciNet  MATH  Google Scholar 

  28. Van Daele, A.: Locally compact quantum groups. A von Neumann algebra approach. SIGMA 10 (2014). article 082

  29. Van Daele, A., Wang, S.: Weak multiplier Hopf algebras. Preliminaries, motivation and basic examples. Banach Center Publ. 98, 367–415 (2012)

    Article  MathSciNet  MATH  Google Scholar 

  30. Wang, J.-K.: Multipliers on commutative Banach algebras. Pacif. J. Math. 11, 1131–1149 (1961)

    Article  MathSciNet  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Anatoly N. Kochubei.

Additional information

Presented by Kenneth Goodearl.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kochubei, A.N. Non-Archimedean Duality: Algebras, Groups, and Multipliers. Algebr Represent Theor 19, 1081–1108 (2016). https://doi.org/10.1007/s10468-016-9612-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10468-016-9612-9

Keywords

Mathematics Subject Classification (2010)

Navigation