Skip to main content
Log in

Cluster Structure on Generalized Weyl Algebras

  • Published:
Algebras and Representation Theory Aims and scope Submit manuscript

Abstract

We introduce a class of non-commutative algebras that carry non-commutative cluster structure which are generated by identical copies of generalized Weyl algebras. Equivalent conditions for the finiteness of the set of the cluster variables of these cluster structures are provided. Mutations along with some combinatorial data, called cluster strands, arising from the cluster structure are used to construct representations of generalized Weyl algebras.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Bavula, V.V.: Generalized Weyl algebras and their representations. Algebra i Analiz 4(1), 7597 (1992). English transl. in St. Petersburg Math. J. 4(1), 7192 (1993)

    MathSciNet  MATH  Google Scholar 

  2. Berenstein, A., Fomin, S., Zelevinsky, A.: Cluster algebra III: Upper bounds and double Bruhat cells, Duke Math. J. arXiv:math.RT/0305434

  3. Berenstein, A., Zelevinsky, A.: Quantum cluster algebras. Adv. Math. 195(2), 405–455 (2005)

    Article  MathSciNet  MATH  Google Scholar 

  4. Dixmier, J.: Enveloping Algebras. North Holland (1977)

  5. Fock, V.V., Goncharov, A.B.: Cluster ensembles, quantization and the dilogarithm. Ann. Scient. Ec. Norm. Sup 42, 865–930 (2009)

    MathSciNet  MATH  Google Scholar 

  6. Fock, V.V., Goncharov, A.B.: Cluster ensembles, quantization and the dilogarithm II: the intertwiner. arXiv:math/0702398v1[math.QA]13 (2007)

  7. Fock, V.V., Goncharov, A.B.: The quantum dilogarithm and representations of cluster varieties. arXiv:math/0702398v6[math.QA]21 (2008)

  8. Fomin, S., Zelevinsky, A.: Cluster algebras I. Foundations. J. Amer. Math. Soc. 15(2), 497–529(electronic) (2002)

    Article  MathSciNet  MATH  Google Scholar 

  9. Fomin, S., Zelevinsky, A.: Cluster algebras II. Finite type classification. Invent. Math. 154, 63–121 (2003)

    Article  MathSciNet  MATH  Google Scholar 

  10. Fomin, S., Zelevinsky, A.: Cluster algebras IV: Coefficients. Compositio Mathematica 143, 112–164 (2007)

    Article  MathSciNet  MATH  Google Scholar 

  11. Keller, B.: Cluster algebras and derived categories. arXiv:1202.4161v4[math.RT].12 (2012)

  12. Ore, O.: Linear equations in non-commutative fields. Ann. Math. 32(2), 463–477 (1931)

    Article  MathSciNet  MATH  Google Scholar 

  13. Rosenberg, A.L.: Algebraic Geometry Representations of Quantized Algebras. Kluwer Academic Publishers, Dordrecht, Boston London (1995)

    Book  MATH  Google Scholar 

  14. Rosenberg, A.L.: Geometry of Grothendieck Categories. Preprint, Harvard (1989)

  15. Saleh, I.A.: Exchange maps of cluster algebras. Int. Electron. J. Algebra 16, 1–15 (2014)

    MathSciNet  MATH  Google Scholar 

  16. Zelevinsky, A.: Cluster algebras: Notes for 2004 IMCC (Chonju, Korea, August 2004). arXiv:math.RT/0407414

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ibrahim Saleh.

Additional information

Presented by Paul Smith.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Saleh, I. Cluster Structure on Generalized Weyl Algebras. Algebr Represent Theor 19, 1017–1041 (2016). https://doi.org/10.1007/s10468-016-9609-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10468-016-9609-4

Keywords

Mathematics Subject Classification (2010)

Navigation