Skip to main content
Log in

The Global Dimension of the full Transformation Monoid (with an Appendix by V. Mazorchuk and B. Steinberg)

  • Published:
Algebras and Representation Theory Aims and scope Submit manuscript

Abstract

The representation theory of the symmetric group has been intensively studied for over 100 years and is one of the gems of modern mathematics. The full transformation monoid \(\mathfrak {T}_{n}\) (the monoid of all self-maps of an n-element set) is the monoid analogue of the symmetric group. The investigation of its representation theory was begun by Hewitt and Zuckerman in 1957. Its character table was computed by Putcha in 1996 and its representation type was determined in a series of papers by Ponizovskiĭ, Putcha and Ringel between 1987 and 2000. From their work, one can deduce that the global dimension of \(\mathbb {C}\mathfrak {T}_{n}\) is n−1 for n = 1, 2, 3, 4. We prove in this paper that the global dimension is n−1 for all n ≥ 1 and, moreover, we provide an explicit minimal projective resolution of the trivial module of length n−1. In an appendix with V. Mazorchuk we compute the indecomposable tilting modules of \(\mathbb {C}\mathfrak T_{n}\) with respect to Putcha’s quasi-hereditary structure and the Ringel dual (up to Morita equivalence).

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Auslander, M., Reiten, I., Smalø, S.O.: Representation theory of Artin algebras, volume 36 of Cambridge Studies in Advanced Mathematics. Cambridge University Press, Cambridge (1997). Corrected reprint of the 1995 original

    Google Scholar 

  2. Assem, I., Simson, D., Skowroíski, A.: Elements of the representation theory of associative algebras. Vol. 1, volume 65 of London Mathematical Society Student Texts. Cambridge University Press, Cambridge (2006). Techniques of representation theory

    Book  Google Scholar 

  3. Benson, D.J.: Representations and cohomology. I, volume 30 of Cambridge Studies in Advanced Mathematics, second edition. Cambridge University Press, Cambridge (1998). Basic representation theory of finite groups and associative algebras

    Google Scholar 

  4. Clifford, A.H., Preston, G.B.: The algebraic theory of semigroups. Vol. I Mathematical Surveys No. 7. American Mathematical Society, Providence R.I. (1961)

  5. Cline, E., Parshall, B., Scott, L.: Finite-dimensional algebras and highest weight categories. J. Reine Angew. Math. 391, 85–99 (1988)

    MathSciNet  MATH  Google Scholar 

  6. Ceccherini-Silberstein, T., Scarabotti, F., Tolli, F.: Representation theory of the symmetric groups, volume 121 of Cambridge Studies in Advanced Mathematics. Cambridge University Press, Cambridge (2010). The Okounkov-Vershik approach, character formulas, and partition algebras

    Book  MATH  Google Scholar 

  7. Carlson, J.F., Townsley, L., Valeri-Elizondo, L., Zhang, M.: Cohomology rings of finite groups, volume 3 of Algebras and Applications. Kluwer Academic Publishers, Dordrecht,. With an appendix: Calculations of cohomology rings of groups of order dividing 64 by Carlson, Valeri-Elizondo and Zhang (2003)

  8. Diaconis, P.: Group representations in probability and statistics Institute of Mathematical Statistics Lecture Notes—Monograph Series 11. Institute of Mathematical Statistics, Hayward, CA (1988)

  9. Diaconis, P.: A generalization of spectral analysis with application to ranked data. Ann. Statist. 17(3), 949–979 (1989)

    Article  MathSciNet  MATH  Google Scholar 

  10. Drozd, Y.A., Kirichenko, V.V.: Finite-dimensional algebras. Springer-Verlag, Berlin (1994). Translated from the 1980 Russian original and with an appendix by Vlastimil Dlab

    Book  MATH  Google Scholar 

  11. Donkin, S.: The q-Schur algebra, volume 253 of London Mathematical Society Lecture Note Series. Cambridge University Press, Cambridge (1998)

    Google Scholar 

  12. Dlab, V., Ringel, C.M.: Quasi-hereditary algebras. Illinois J. Math. 33(2), 280–291 (1989)

    MathSciNet  MATH  Google Scholar 

  13. Eilenberg, S.: Automata, languages, and machines. Vol. B. Academic Press, New York. With two chapters (“Depth decomposition theorem” and “Complexity of semigroups and morphisms”) by Bret Tilson, Pure and Applied Mathematics, Vol.59 (1976)

  14. Fulton, W., Harris, J.: Representation theory, volume 129 of Graduate Texts in Mathematics. Springer-Verlag, New York (1991). A first course, Readings in Mathematics

    Google Scholar 

  15. Ganyushkin, O., Mazorchuk, V.: Classical finite transformation semigroups, an introduction. Number 9 in Algebra and Applications Springer (2009)

  16. Ganyushkin, O., Mazorchuk, V., Steinberg, B.: On the irreducible representations of a finite semigroup. Proc. Amer. Math. Soc. 137(11), 3585–3592 (2009)

    Article  MathSciNet  MATH  Google Scholar 

  17. Green, J. A.: On the structure of semigroups. Ann. of Math. 54(2), 163–172 (1951)

    Article  MathSciNet  MATH  Google Scholar 

  18. Green, J.A.: Polynomial representations of GL n , volume 830 of Lecture Notes in Mathematics. Springer-Verlag, Berlin (1980)

    Google Scholar 

  19. Higgins, P.M.: Techniques of semigroup theory. Oxford Science Publications. The Clarendon Press Oxford University Press, New York (1992). With a foreword by G. B. Preston

    Google Scholar 

  20. Hewitt, E., Zuckerman, H.S.: The irreducible representations of a semi-group related to the symmetric group. Illinois J. Math. 1, 188–213 (1957)

    MathSciNet  MATH  Google Scholar 

  21. James, G., Kerber, A.: The representation theory of the symmetric group, volume 16 of Encyclopedia of Mathematics and its Applications. Addison-Wesley Publishing Co., Reading, Mass. With a foreword by P. M. Cohn, With an introduction by Gilbert de B. Robinson (1981)

  22. Klucznik, M., König, S.: Characteristic tilting modules over quasi-hereditary algebras, Preprint 99004, SFB 343, Bielefeld University, Bielefeld, Germany (1999)

  23. Krohn, K., Rhodes, J., Tilson, B.: Algebraic theory of machines, languages, and semigroups. M.A. Arbib. With a major contribution by Kenneth Krohn and John L. Rhodes. Academic Press, New York, 1968. Chapters 1, 5–9

  24. Macdonald, I.G.: Symmetric functions and Hall polynomials. Oxford mathematical monographs, second edition. Oxford University Press, New York (1995). With contributions by A. Zelevinsky, Oxford Science Publications

    Google Scholar 

  25. Margolis, S., Steinberg, B.: The quiver of an algebra associated to the Mantaci-Reutenauer descent algebra and the homology of regular semigroups. Algebr. Represent. Theory 14(1), 131–159 (2011)

    Article  MathSciNet  MATH  Google Scholar 

  26. Munn, W.D.: Matrix representations of semigroups. Proc. Cambrdige Philos. Soc. 53, 5–12 (1957)

    Article  MathSciNet  MATH  Google Scholar 

  27. Nico, W.R.: Homological dimension in semigroup algebras. J. Algebra 18, 404–413 (1971)

    Article  MathSciNet  MATH  Google Scholar 

  28. Nico, W.R.: An improved upper bound for global dimension of semigroup algebras. Proc. Amer. Math. Soc. 35, 34–36 (1972)

    Article  MathSciNet  MATH  Google Scholar 

  29. Ponizovskiĭ, I.S.: On matrix representations of associative systems. Mat. Sb. N.S. 38(80), 241–260 (1956)

    MathSciNet  Google Scholar 

  30. Ponizovskiĭ, I.S.: Some examples of semigroup algebras of finite representation type. Zap. Nauchn. Sem. Leningrad. Otdel. Mat. Inst. Steklov. (LOMI), 160(Anal. Teor. Chisel i Teor. Funktsii.) 302(8), 1987

  31. Putcha, M.S.: Complex representations of finite monoids. Proc. London Math. Soc. 73(3), 623–641 (1996)

    Article  MathSciNet  MATH  Google Scholar 

  32. Putcha, M.S.: Complex representations of finite monoids. II. Highest weight categories and quivers. J. Algebra 205(1), 53–76 (1998)

    Article  MathSciNet  MATH  Google Scholar 

  33. Ringel, C.M.: The category of modules with good filtrations over a quasi-hereditary algebra has almost split sequences. Math. Z. 208(2), 209–223 (1991)

    Article  MathSciNet  MATH  Google Scholar 

  34. Ringel, C.M.: The representation type of the full transformation semigroup T 4. Semigroup Forum 61(3), 429–434 (2000)

    Article  MathSciNet  MATH  Google Scholar 

  35. Rhodes, J., Steinberg, B.: The q-theory of finite semigroups. Springer Monographs in Mathematics. Springer, New York (2009)

    Book  MATH  Google Scholar 

  36. Sagan, B.E.: The symmetric group, volume 203 of Graduate Texts in Mathematics, second edition. Springer-Verlag, New York (2001). Representations, combinatorial algorithms, and symmetric functions

    Google Scholar 

  37. Scott, L.L.: Simulating algebraic geometry with algebra. I. The algebraic theory of derived categories. In: The Arcata Conference on Representations of Finite Groups (Arcata, Calif., 1986), volume 47 of Proc. Sympos. Pure Math., pages 271-281. Amer. Math. Soc., Providence, RI (1987)

  38. Steinberg, B.: The representation theory of finite monoids. Springer. To appear

  39. Tilson, B.: Depth decomposition theorem, chapter XI, pages 287–312. In: Eilenberg [13] (1976)

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Benjamin Steinberg.

Additional information

Presented by Anne Schilling.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Steinberg, B. The Global Dimension of the full Transformation Monoid (with an Appendix by V. Mazorchuk and B. Steinberg). Algebr Represent Theor 19, 731–747 (2016). https://doi.org/10.1007/s10468-016-9597-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10468-016-9597-4

Keywords

Mathematics Subject Classfication (2010)

Navigation