Standard Monomial Theory for Wonderful Varieties

Abstract

A general setting for a standard monomial theory on a multiset is introduced and applied to the Cox ring of a wonderful variety. This gives a degeneration result of the Cox ring to a multicone over a partial flag variety. Further, we deduce that the Cox ring has rational singularities.

This is a preview of subscription content, access via your institution.

References

  1. 1.

    Alexeev, V., Brion, M.: Toric degenerations of spherical varieties. Selecta Math. (N.S.) 10, 453–478 (2004)

    MathSciNet  Article  MATH  Google Scholar 

  2. 2.

    Appel, K.: Standard monomials for wonderful group compactifications. J. Algebra 310, 70–87 (2007)

    MathSciNet  Article  MATH  Google Scholar 

  3. 3.

    Bourbaki, N.: Éléments de mathématique, Cap. 4, 5 et 6, Masson. Paris (1981)

  4. 4.

    Boutot, J.-F.: Singularités rationnelles et quotients par les groupes réductifs. Invent. Math. 88(1), 65–68 (1987)

    MathSciNet  Article  MATH  Google Scholar 

  5. 5.

    Bravi, P., Luna, D.: An introduction to wonderful varieties with many examples of type F 4. J. Algebra 329, 4–51 (2011)

    MathSciNet  Article  MATH  Google Scholar 

  6. 6.

    Brion, M.: Groupe de Picard et nombres caractéristiques des variétés sphériques. Duke Math. J. 58, 397–424 (1989)

    MathSciNet  Article  MATH  Google Scholar 

  7. 7.

    Brion, M.: The total coordinate ring of a wonderful variety. J. Algebra 313, 61–99 (2007)

    MathSciNet  Article  MATH  Google Scholar 

  8. 8.

    Chirivì, R.: A note on jeu de taquin. Atti Accad. Naz. Lincei Cl. Sci. Fis. Mat. Natur. Rend. Lincei (9) Mat. Appl. 10(4), 219–228 (1999)

    MathSciNet  MATH  Google Scholar 

  9. 9.

    Chirivì, R.: LS Algebras and Application to Schubert varieties. Transform. Groups 5, 245–264 (2000)

    MathSciNet  Article  MATH  Google Scholar 

  10. 10.

    Chirivì, R.: LS algebras and Schubert varieties. PhD thesis, Scuola Normale Superiore (2000)

  11. 11.

    Chirivì, R.: Deformation and Cohen-Macaulayness of the multicone over the flag variety. Comment. Math. Helv. 76, 436–466 (2001)

    MathSciNet  Article  MATH  Google Scholar 

  12. 12.

    Chirivì, R., Littelmann, P., Maffei, A.: Equations defining symmetric varieties and affine Grassmannians Int. Math. Res. Not., pp 291–347 (2009)

  13. 13.

    Chirivì, R., Maffei, A.: The ring of sections of a complete symmetric variety. J. Algebra 261, 310–326 (2003)

    MathSciNet  Article  MATH  Google Scholar 

  14. 14.

    Chirivì, R., Maffei, A.: Plücker relations and spherical varieties: application to model varieties. Transform. Groups 19, 979–997 (2014)

    MathSciNet  Article  MATH  Google Scholar 

  15. 15.

    De Concini, C., Procesi, C.: A characteristic free approach to invariant theory. Advances in Math. 21(3), 330–354 (1976)

    MathSciNet  Article  MATH  Google Scholar 

  16. 16.

    De Concini, C., Procesi, C.: Complete symmetric varieties. In: Invariant Theory (Montecatini, 1982), Lecture Notes in Math., vol. 996, pp. 1–44. Springer, Berlin (1983)

  17. 17.

    Dehy, R.: Combinatorial results on Demazure modules. J. Algebra 205, 505–524 (1998)

    MathSciNet  Article  MATH  Google Scholar 

  18. 18.

    Doubilet, P., Rota, G., Stein, J.: On the foundations of the combinatorial theory, IX Combinatorial methods in invariant theory. Stud. Appl. Math. 53, 185–216 (1974)

    MathSciNet  Article  MATH  Google Scholar 

  19. 19.

    Elkik, R.: Singularités rationnelles et déformations. Invent. Math. 47, 139–147 (1978)

    MathSciNet  Article  MATH  Google Scholar 

  20. 20.

    Hodge, W.V.D.: Some enumerative results in the theory of forms. Proc. Cambridge Philos. Soc. 39, 22–30 (1943)

    MathSciNet  Article  MATH  Google Scholar 

  21. 21.

    Hodge, W.V.D., Pedoe, D.: Methods of algebraic geometry Vol. II Book III: General theory of algebraic varieties in projective space, Book IV: Quadrics and Grassmann varieties. Reprint of the 1952 original. Cambridge University Press, Cambridge (1994)

    Google Scholar 

  22. 22.

    Kempf, G.R., Ramanathan, A.: Multicones over Schubert varieties. Invent. Math. 87, 353–363 (1987)

    MathSciNet  Article  MATH  Google Scholar 

  23. 23.

    Lakshmibai, V., Littelmann, P., Magyar, P.: Standard monomial theory and applications. In: Broer, A. (ed.) Representation Theories and Algebraic Geometry. Kluwer, Norwell, MA (1998)

    Google Scholar 

  24. 24.

    Lakshmibai, V., Seshadri, C.S.: Geometry of G/P-II, The work of De Concini and Procesi and the basic conjectures. Indian Academy of Sciences: Proceedings Part A 87, 1–54 (1978)

    MathSciNet  MATH  Google Scholar 

  25. 25.

    Littelmann, P.: Paths and root operators in representations theory. Ann. Math. 142, 499–525 (1995)

    MathSciNet  Article  MATH  Google Scholar 

  26. 26.

    Littelmann, P.: A plactic algebra for semisimple Lie algebras. Adv. Math. 124, 312–331 (1996)

    MathSciNet  Article  MATH  Google Scholar 

  27. 27.

    Littelmann, P.: Contracting modules and standard monomial theory for symmetrizable kac-moody algebras. J. Amer. Math. Soc. 11, 551–567 (1998)

    MathSciNet  Article  MATH  Google Scholar 

  28. 28.

    Luna, D.: Toute variété magnifique est sphérique. Transform. Groups 1, 249–258 (1996)

    MathSciNet  Article  Google Scholar 

  29. 29.

    Popov, V.L.: Contraction of the actions of reductive algebraic groups. Math. USSR-Sb 58, 311–335 (1987)

    Article  MATH  Google Scholar 

  30. 30.

    Seshadri, C.S.: Seshadri Geometry of G/P. I. Theory of standard monomials for minuscule representations. In: Ramanujam, C.P. (ed.) A Tribute, Tata Institute of Fundamental Research Studies in Mathematics, vol. 8, pp. 207–39. Springer, Berlin (1978)

Download references

Author information

Affiliations

Authors

Corresponding author

Correspondence to R. Chirivì.

Additional information

Presented by Peter Littelmann.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Bravi, P., Chirivì, R., Gandini, J. et al. Standard Monomial Theory for Wonderful Varieties. Algebr Represent Theor 19, 489–509 (2016). https://doi.org/10.1007/s10468-015-9586-z

Download citation

Keywords

  • Standard monomial theory
  • Wonderful variety
  • Degeneration
  • Rational singularity

Mathematics Subject Classification (2010)

  • Primary 14M27
  • Secondary 13F50
  • 20G05