Skip to main content
Log in

Associative Algebras Admitting a Quasi-multiplicative Basis

  • Published:
Algebras and Representation Theory Aims and scope Submit manuscript

Abstract

A basis \({\mathcal B}=\{e_{i}\}_{i \in I}\) of an associative algebra \({\frak A},\) over an arbitrary base field \({\mathbb F}\), is called multiplicative if for any i,jI we have that \(e_{i}e_{j} \in {\mathbb F} e_{k}\) for some kI. The class of associative algebras admitting a multiplicative basis can be seen as a particular case of the more general class of associative algebras admitting a quasi-multiplicative basis. In the present paper we prove that if an associative algebra \({\frak A}\) admits a quasi-multiplicative basis then it decomposes as the sum of well-described ideals admitting quasi-multiplicative bases plus (maybe) a certain linear subspace. Also the minimality of \({\frak A}\) is characterized in terms of the quasi-multiplicative basis and it is shown that, under mild conditions, the above decomposition is actually the direct sum of the family of its minimal ideals admitting a quasi-multiplicative basis.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Bahturin, Y.A., Zaicev, M.V., Sehgal, S.K.: Finite dimensional simple graded algebras. Matematicheski. Sbornik 199(7), 21–40 (2008)

    Article  Google Scholar 

  2. Babych, V., Golovashchuk, N., Ovsienko, S.: Generalized multiplicative bases for one-sided bimodule problems. Algebra Discrete Math 12(2), 1–24 (2011)

    MATH  MathSciNet  Google Scholar 

  3. Balogh, Z.: Further results on a filtered multiplicative basis of group algebras. Math. Commun 12(2), 229–238 (2007)

    MATH  MathSciNet  Google Scholar 

  4. Bautista, R., Gabriel, P., Roiter, A.V., Salmeron, L.: Representation-finite algebras and multiplicative basis. Invent. math. 81, 217–285 (1985)

    Article  MATH  MathSciNet  Google Scholar 

  5. Bovdi, V.: On a filtered multiplicative basis of group algebras. Arch. Math. (Basel) 74(2), 81–88 (2000)

    Article  MATH  MathSciNet  Google Scholar 

  6. Bovdi, V., Grishkov, A., Siciliano, S.: Filtered multiplicative bases of restricted enveloping algebras. Algebr. Represent. Theory 14(4), 601–608 (2011)

    Article  MATH  MathSciNet  Google Scholar 

  7. Bovdi, V.: On a filtered multiplicative bases of group algebras. II. Algebr. Represent. Theory 6(3), 353–368 (2003)

    Article  MATH  MathSciNet  Google Scholar 

  8. Calderón, A.J.: On the structure of graded Lie algebras. J. Math. Phys. 50 10(103513), 8 (2009)

    Google Scholar 

  9. Calderón, A. J.: On simple split Lie triple systems. Algebr. Represent. Theory 12(2-5), 401–415 (2009)

    Article  MATH  MathSciNet  Google Scholar 

  10. Calderón, A.J.: On graded associative algebras. Reports on Mathematical physics 69(1), 75–86 (2012)

    Article  MATH  MathSciNet  Google Scholar 

  11. Calderón, A.J., Sánchez, J.M.: Split Leibniz algebras. Linear Algebra Appl 436(6), 1648–1660 (2012)

    Google Scholar 

  12. Conlon, S.B.: Twisted group algebras and their representations. J. Austral. Math. Soc 4, 152–173 (1964)

    Article  MATH  MathSciNet  Google Scholar 

  13. de la Mora, C., Wojciechowski, P.J.: Multiplicative bases in matrix algebras. Linear Algebra Appl. 419 2-3, 287–298 (2006)

    MathSciNet  Google Scholar 

  14. Freed, D. S., Vafa, C.: Global anomalies on orbifolds. Commun. Math. Phys 110(3), 107–119 (1987)

    Article  MathSciNet  Google Scholar 

  15. Gehlen, G.V., Rittenberg, V., Ruegg, H.: Conformal invariance and finite-dimensional quantum chains. J. Phys. A 29(1), 107–119 (1986)

    Article  Google Scholar 

  16. Green, E.L.: Multiplicative bases, Gröbner bases, and right Gröbner bases. J. Symbolic Comput. 29 4-5, 601–623 (2000)

    Article  Google Scholar 

  17. On Lie gradings III. Linear Algebra Appl 277, 97–125 (1998)

  18. Kochetov, M.: Gradings on finite-dimensional simple Lie algebras. Acta Appl. Math 108(1), 101–127 (2009)

    MATH  MathSciNet  Google Scholar 

  19. Kupisch, H.: Symmetrische Algebren mit endlich vielen unzerlegbaren Darstellungen. I. J. Reine Angew. Math 219, 1–25 (1965)

    MATH  MathSciNet  Google Scholar 

  20. Kupisch, H., Waschbusch, J.: On multiplicative basis in quasi-Frobenius algebras. Math. Z 186, 401–405 (1984)

    Article  MATH  MathSciNet  Google Scholar 

  21. Roiter, A.V., Sergeichuk, V.V.: Existence of a multiplicative basis for finitely spaced module over an aggregate. Ukr. Math. J 46(5), 604–617 (1995)

    Article  MathSciNet  Google Scholar 

Download references

Acknowledgment

The author would like to thank the referee for his exhaustive review of the paper as well as his suggestions which have helped to improve the work.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to A. J. Calderon Martin.

Additional information

Presented by: Raymundo Bautista.

Supported by the PCI of the UCA ‘Teoría de Lie y Teoría de Espacios de Banach’, by the PAI with project numbers FQM298, FQM7156 and by the project of the Spanish Ministerio de Educación y Ciencia MTM2010-15223.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Calderon Martin, A.J. Associative Algebras Admitting a Quasi-multiplicative Basis. Algebr Represent Theor 17, 1889–1900 (2014). https://doi.org/10.1007/s10468-014-9482-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10468-014-9482-y

Keywords

MSC Classification (2010)

Navigation