Skip to main content
Log in

The Double Centralizer Theorem for Semiprime Algebras

  • Published:
Algebras and Representation Theory Aims and scope Submit manuscript

Abstract

In the paper we prove the double centralizer theorem for semiprime algebras. To be precise, let R be a closed semiprime algebra over its extended centroid F, and let A be a closed semiprime subalgebra of R, which is a finitely generated module over F. Then C R (A) is also a closed semiprime algebra and C R (C R (A)) = A. In addition, if C R (A) satisfies a polynomial identity, then so does the whole ring R. Here, for a subset T of R, we write C R (T): = {x ∈ R|xt = tx ∀ t ∈ T}, the centralizer of T in R.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Armendariz, E.P., Park, J.K.: The double centralizer theorem for division algebras. Israel J. Math. 45(1), 63–68 (1983)

    Article  MATH  MathSciNet  Google Scholar 

  2. Behrens, E.A.: Ring theory, translated from the German by Clive Reis. In: Pure and Applied Mathematics, vol. 44. Academic Press, New York-London (1972)

    Google Scholar 

  3. Beidar, K.I., Martindale 3rd, W.S., Mikhalev, A.V.: Rings with Generalized Identities. In: Monographs and Textbooks in Pure and Applied Mathematics, vol. 196. Marcel Dekker, Inc., New York (1996)

    Google Scholar 

  4. Brešar, M.: The range and kernel inclusion of algebraic derivations and commuting maps. Q. J. Math. 56(1), 31–41 (2005)

    Article  MATH  MathSciNet  Google Scholar 

  5. Carlson, R.E., Cullen, C.G.: Commutativity for matrices of quarternions. Can. J. Math. 20, 21–24 (1968)

    Article  MATH  MathSciNet  Google Scholar 

  6. Chuang, C.-L.: GPIs having coefficients in Utumi quotient rings. Proc. Am. Math. Soc. 103(3), 723–728 (1988)

    Article  MATH  MathSciNet  Google Scholar 

  7. Chuang, C.-L., Lee, T.-K.: Algebraic derivations with constants satisfying a polynomial identity. Israel J. Math. 138, 43–60 (2003)

    Article  MATH  MathSciNet  Google Scholar 

  8. Chuang, C.-L., Lee, T.-K., Zhou, Y.: Constants of algebraic derivations in prime rings. Comm. Algebra 36(9), 3478–3495 (2008)

    Article  MATH  MathSciNet  Google Scholar 

  9. Curtis, C.W., Reiner, I.: Representation theory of finite groups and associative algebras. In: Pure and Applied Mathematics, vol. XI. Interscience Publishers, New York-London (1962)

    Google Scholar 

  10. Draxl, P.K.: Skew fields. In: London Mathematical Society Lecture Note Series, vol. 81. Cambridge University Press, Cambridge (1983)

    Google Scholar 

  11. Erickson, T.S., Martindale 3rd, W.S., Osborn, J.M.: Prime nonassociative algebras. Pac. J. Math. 60(1), 49–63 (1975)

    Article  MATH  MathSciNet  Google Scholar 

  12. Herstein, I.N.: Noncommutative rings, Reprint of the 1968 original. With an afterword by Lance W. Small. In: Carus Mathematical Monographs, vol. 15. Mathematical Association of America, Washington, DC (1994)

    Google Scholar 

  13. Jacobson, N.: PI-Algebras: An Introduction. Lecture Notes in Math., vol. 441. Springer-Verlag, Berlin (1975)

    MATH  Google Scholar 

  14. Kharchenko, V.K.: On centralizers in prime rings. (Russian) Algebra i Logika 20(2), 231–247, 251 (1981)

    MathSciNet  Google Scholar 

  15. Lagerstrom, P.: A proof of a theorem on commutative matrices. Bull. Am. Math. Soc. 51, 535–536 (1945)

    Article  MATH  MathSciNet  Google Scholar 

  16. Martindale 3rd, W.S.: Prime rings satisfying a generalized polynomial identity. J. Algebra 12, 576–584 (1969)

    Article  MATH  MathSciNet  Google Scholar 

  17. Montgomery, S., Smith, M.K.: Algebras with a separable subalgebra whose centralizer satisfying a polynomial identity. Comm. Algebra 3(2), 151–168 (1975)

    Article  MATH  MathSciNet  Google Scholar 

  18. Rowen, L.H.: General polynomial identities. II. J. Algebra 12, 380–392 (1976)

    Article  MathSciNet  Google Scholar 

  19. Wedderburn, J.H.M.: Lectures on Matrices. Am. Math. Soc., Colloq. Publ., vol. 17. Providence, RI (1934)

  20. Werner, W.L.: A double centralizer theorem for simple associative algebras. Can. J. Math. 21, 477–478 (1969)

    Article  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Tsiu-Kwen Lee.

Additional information

Members of Mathematics Division, National Center for Theoretical Sciences (Taipei Office).

Rights and permissions

Reprints and permissions

About this article

Cite this article

Chuang, CL., Lee, TK. The Double Centralizer Theorem for Semiprime Algebras. Algebr Represent Theor 17, 1277–1288 (2014). https://doi.org/10.1007/s10468-013-9447-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10468-013-9447-6

Keywords

Mathematics Subject Classifications (2010)

Navigation