Skip to main content
Log in

Rings of Fractions of Reduction Algebras

  • Published:
Algebras and Representation Theory Aims and scope Submit manuscript

Abstract

We establish the absence of zero divisors in the reduction algebra of a Lie algebra \({\mathfrak{g}}\) with respect to its reductive Lie subalgebra \({\mathfrak{k}}\). We identify the field of fractions of the diagonal reduction algebra of \({\mathfrak{sl}}_2\) with the standard skew field; as a by-product we obtain a two-parametric family of realizations of this diagonal reduction algebra by differential operators. We also present a new proof of the Poincaré–Birkhoff–Witt theorem for reduction algebras.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Asherova, R.M., Smirnov, Y.F., Tolstoy, V.N.: Description of a certain class of projection operators for complex semi-simple Lie algebras, (Russian). Matem. Zametki 26, 15–25 (1979)

    MATH  Google Scholar 

  2. Bergman, G.: The diamond lemma for ring theory. Adv. Math. 29, 178–218 (1978)

    Article  MathSciNet  Google Scholar 

  3. Bokut′, L.: Embeddings into simple associative algebras (Russian). Algebra Log. 15, 117–142 (1976)

    MATH  MathSciNet  Google Scholar 

  4. Gelfand, I.M., Kirillov, A.A.: Sur les corps liés aux algèbres enveloppantes des algèbres de Lie. Inst. Hautes Études Sci. Publ. Math. 31, 5–19 (1966)

    Article  MathSciNet  Google Scholar 

  5. Gelfand, I.M., Kirillov, A.A.: Structure of the field of fractions related to a simple splitting Lie algebra. Func. Anal. i Prilozhen. 3(1), 509–523 (1966)

    MathSciNet  Google Scholar 

  6. Khoroshkin. S., Ogievetsky, O.: Mickelsson algebras and Zhelobenko operators. J. Algebra 319. 2113–2165 (2008). arXiv:math.QA/0606259

    Article  MATH  MathSciNet  Google Scholar 

  7. Khoroshkin, S., Ogievetsky, O.: Diagonal reduction algebras of \({\mathfrak{gl}}\) type. Funktsional. Anal. i Prilozhen. 44(3), 27–49 (2010). (English transl.: Funct. Anal. Appl. 44, 182–198 (2010)). arXiv:0912.4055

    Article  MATH  MathSciNet  Google Scholar 

  8. Khoroshkin, S., Ogievetsky, O.: Structure constants of diagonal reduction algebras of gl type. SIGMA 7(064), 34 pp. (2011). arXiv:1101.2647

    MathSciNet  Google Scholar 

  9. Mickelsson, J.: Step algebras of semisimple subalgebras of Lie algebras. Rep. Math. Phys. 4(4), 303–318 (1973)

    Article  Google Scholar 

  10. Ogievetsky, O.: Uses of quantum spaces. Contemp. Math. 294, 161–232 (2002)

    Article  MathSciNet  Google Scholar 

  11. Premet, A.: Modular Lie algebras and the Gelfand–Kirillov conjecture. Invent. Math. 181, 395–420 (2010). arXiv:0907.2500. [math.RT]

    Article  MATH  MathSciNet  Google Scholar 

  12. Zhelobenko, D.: Representations of Reductive Lie Algebras. Nauka, Moscow (1994)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to O. Ogievetsky.

Additional information

On leave of absence from P.N. Lebedev Physical Institute, Theoretical Department, Leninsky prospekt 53, 119991 Moscow, Russia.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Khoroshkin, S., Ogievetsky, O. Rings of Fractions of Reduction Algebras. Algebr Represent Theor 17, 265–274 (2014). https://doi.org/10.1007/s10468-012-9397-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10468-012-9397-4

Keywords

Navigation