Abstract
We study the de-equivariantization of a Hopf algebra by an affine group scheme and we apply Tannakian techniques in order to realize it as the tensor category of comodules over a coquasi-bialgebra. As an application we construct a family of coquasi-Hopf algebras A(H, G, Φ) attached to a coradically-graded pointed Hopf algebra H and some extra data.
Similar content being viewed by others
References
Andruskiewitsch, N., García, G.: Finite subgroups of a simple quantum group. Compos. Math. 145, 476–500 (2009)
Andruskiewitsch, N., García, G.: Pointed Hopf algebras. New directions in Hopf algebras. MSRI series Cambridge Univ. Press, pp. 1–68 (2002)
Angiono, I.: Basic quasi-Hopf algebras over cyclic groups. Adv. Math. 225, 3545–3575 (2010)
Angiono, I.: On Nichols algebras of diagonal type. J. Reine Angew. Math. (2012). doi:10.1515/crelle-2011-0008
Arkhipov, S., Gaitsgory, D.: Another realization of the category of modules over the small quantum group. Adv. Math. 173, 114–143 (2003)
Dǎscǎlescu, S., Militaru, G., Raianu, Ş.: Crossed coproducts and cleft coextensions. Comm. Algebra 24, 1229–1243 (1996)
De Concini, C., Lyubashenko, V.: Quantum function algebra at roots of 1. Adv. Math. 108, 205–262 (1994)
Drinfeld, V., Gelaki, S., Nikshych, D., Ostrik, V.: On braided fusion categories I. Selecta Math. 16(1), 1–119 (2010)
Etingof, P., Gelaki, S.: The small quantum group as a quantum double. J. Algebra 322, 2580–2585 (2009)
Frenkel, E., Gaitsgory, D.: Localization of \(\mathfrak{g}\)-modules on the affine Grassmannian. Ann. Math. 170, 1339–1381 (2009)
Gaitsgory, D.: The notion of category over an algebraic stack. http://arxiv.org/pdf/math/0507192v1.pdf (2005). Accessed 15 Nov 2012
García, G.: Quantum subgroups of GL α,β (n). J. Algebra 324, 1392–1428 (2010)
Gelaki, S.: Basic quasi-Hopf algebras of dimension n 3. J. Pure Appl. Algebra 198, 165–174 (2005)
Heckenberger, I.: Classification of arithmetic root systems. Adv. Math. 220, 59–124 (2009)
Joyal, A., Street, R.: An introduction to Tannaka duality and quantum groups. In: Part II of Category Theory, Proceedings, Como 1990. Lec. Notes in Mathematics, vol. 1488, pp. 411–492 (1991)
Kassel, C.: Quantum Groups. Graduate Texts in Mathematics, vol. 155. Springer, New York (1995)
Montgomery, S.: Hopf algebras and their actions on rings. CBMS Conf. Math. Publ. vol. 82, Am. Math. Soc., Providence (1993)
Schauenburg, P.: Hopf bimodules, coquasibialgebras, and an exact sequence of Kac. Adv. Math. 165, 194–263 (2002)
Schauenburg, P.: Two characterizations of finite quasi-Hopf algebras. J. Algebra 273, 538–550 (2004)
Schneider, H.-J.: Principal homegeneous spaces for arbitrary Hopf algebras. Isr. J. Math. 72, 167–231 (1990)
Waterhouse, W.C.: Introduction to Affine Group Schemes. Graduate Texts in Mathematics, vol. 66. Springer, New York (1979)
Author information
Authors and Affiliations
Corresponding author
Additional information
The work of I. A. was partially supported by CONICET, FONCyT-ANPCyT and Secyt (UNC). M.P. is grateful for the support from the grant ANII FCE 2007-059.
Rights and permissions
About this article
Cite this article
Angiono, I., Galindo, C. & Pereira, M. De-Equivariantization of Hopf Algebras. Algebr Represent Theor 17, 161–180 (2014). https://doi.org/10.1007/s10468-012-9392-9
Received:
Accepted:
Published:
Issue Date:
DOI: https://doi.org/10.1007/s10468-012-9392-9
Keywords
- Hopf algebras
- Quasi-Hopf algebras
- Quantum groups
- Nichols algebras
- Coquasi-Hopf algebras
- Tannakian reconstruction
- Equivariantization of tensor categories
- De-equivariantization of tensor categories