Skip to main content
Log in

De-Equivariantization of Hopf Algebras

  • Published:
Algebras and Representation Theory Aims and scope Submit manuscript

Abstract

We study the de-equivariantization of a Hopf algebra by an affine group scheme and we apply Tannakian techniques in order to realize it as the tensor category of comodules over a coquasi-bialgebra. As an application we construct a family of coquasi-Hopf algebras A(H, G, Φ) attached to a coradically-graded pointed Hopf algebra H and some extra data.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Andruskiewitsch, N., García, G.: Finite subgroups of a simple quantum group. Compos. Math. 145, 476–500 (2009)

    Article  MATH  MathSciNet  Google Scholar 

  2. Andruskiewitsch, N., García, G.: Pointed Hopf algebras. New directions in Hopf algebras. MSRI series Cambridge Univ. Press, pp. 1–68 (2002)

  3. Angiono, I.: Basic quasi-Hopf algebras over cyclic groups. Adv. Math. 225, 3545–3575 (2010)

    Article  MATH  MathSciNet  Google Scholar 

  4. Angiono, I.: On Nichols algebras of diagonal type. J. Reine Angew. Math. (2012). doi:10.1515/crelle-2011-0008

    Google Scholar 

  5. Arkhipov, S., Gaitsgory, D.: Another realization of the category of modules over the small quantum group. Adv. Math. 173, 114–143 (2003)

    Article  MATH  MathSciNet  Google Scholar 

  6. Dǎscǎlescu, S., Militaru, G., Raianu, Ş.: Crossed coproducts and cleft coextensions. Comm. Algebra 24, 1229–1243 (1996)

    Article  MathSciNet  Google Scholar 

  7. De Concini, C., Lyubashenko, V.: Quantum function algebra at roots of 1. Adv. Math. 108, 205–262 (1994)

    Article  MATH  MathSciNet  Google Scholar 

  8. Drinfeld, V., Gelaki, S., Nikshych, D., Ostrik, V.: On braided fusion categories I. Selecta Math. 16(1), 1–119 (2010)

    Article  MATH  MathSciNet  Google Scholar 

  9. Etingof, P., Gelaki, S.: The small quantum group as a quantum double. J. Algebra 322, 2580–2585 (2009)

    Article  MATH  MathSciNet  Google Scholar 

  10. Frenkel, E., Gaitsgory, D.: Localization of \(\mathfrak{g}\)-modules on the affine Grassmannian. Ann. Math. 170, 1339–1381 (2009)

    Article  MATH  MathSciNet  Google Scholar 

  11. Gaitsgory, D.: The notion of category over an algebraic stack. http://arxiv.org/pdf/math/0507192v1.pdf (2005). Accessed 15 Nov 2012

  12. García, G.: Quantum subgroups of GL α,β (n). J. Algebra 324, 1392–1428 (2010)

    Article  MATH  MathSciNet  Google Scholar 

  13. Gelaki, S.: Basic quasi-Hopf algebras of dimension n 3. J. Pure Appl. Algebra 198, 165–174 (2005)

    Article  MATH  MathSciNet  Google Scholar 

  14. Heckenberger, I.: Classification of arithmetic root systems. Adv. Math. 220, 59–124 (2009)

    Article  MATH  MathSciNet  Google Scholar 

  15. Joyal, A., Street, R.: An introduction to Tannaka duality and quantum groups. In: Part II of Category Theory, Proceedings, Como 1990. Lec. Notes in Mathematics, vol. 1488, pp. 411–492 (1991)

  16. Kassel, C.: Quantum Groups. Graduate Texts in Mathematics, vol. 155. Springer, New York (1995)

    Book  MATH  Google Scholar 

  17. Montgomery, S.: Hopf algebras and their actions on rings. CBMS Conf. Math. Publ. vol. 82, Am. Math. Soc., Providence (1993)

    MATH  Google Scholar 

  18. Schauenburg, P.: Hopf bimodules, coquasibialgebras, and an exact sequence of Kac. Adv. Math. 165, 194–263 (2002)

    Article  MATH  MathSciNet  Google Scholar 

  19. Schauenburg, P.: Two characterizations of finite quasi-Hopf algebras. J. Algebra 273, 538–550 (2004)

    Article  MATH  MathSciNet  Google Scholar 

  20. Schneider, H.-J.: Principal homegeneous spaces for arbitrary Hopf algebras. Isr. J. Math. 72, 167–231 (1990)

    Article  MATH  Google Scholar 

  21. Waterhouse, W.C.: Introduction to Affine Group Schemes. Graduate Texts in Mathematics, vol. 66. Springer, New York (1979)

    Book  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to César Galindo.

Additional information

The work of I. A. was partially supported by CONICET, FONCyT-ANPCyT and Secyt (UNC). M.P. is grateful for the support from the grant ANII FCE 2007-059.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Angiono, I., Galindo, C. & Pereira, M. De-Equivariantization of Hopf Algebras. Algebr Represent Theor 17, 161–180 (2014). https://doi.org/10.1007/s10468-012-9392-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10468-012-9392-9

Keywords

Mathematics Subject Classifications (2010)

Navigation