Skip to main content
Log in

Semi-Invariants of Symmetric Quivers of Tame Type

  • Published:
Algebras and Representation Theory Aims and scope Submit manuscript

Abstract

A symmetric quiver (Q, σ) is a finite quiver without oriented cycles Q = (Q 0, Q 1) equipped with a contravariant involution σ on \(Q_0\sqcup Q_1\). The involution allows us to define a nondegenerate bilinear form \(\langle -,-\rangle_V\) on a representation V of Q. We shall say that V is orthogonal if \(\langle -,-\rangle_V\) is symmetric and symplectic if \(\langle -,-\rangle_V\) is skew-symmetric. Moreover, we define an action of products of classical groups on the space of orthogonal representations and on the space of symplectic representations. So we prove that if (Q, σ) is a symmetric quiver of tame type then the rings of semi-invariants for this action are spanned by the semi-invariants of determinantal type c V and, when the matrix defining c V is skew-symmetric, by the Pfaffians pf V. To prove it, moreover, we describe the symplectic and orthogonal generic decomposition of a symmetric dimension vector.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Akin, K., Buchsbaum, D., Weyman, J.: Schur functors and Schur complexes. Adv. Math. 44, 207–277 (1982)

    Article  MathSciNet  MATH  Google Scholar 

  2. Aragona, R.: Semi-invariants of symmetric quivers. PhD thesis, arXiv:1006.4378v1 [math.RT] (2009)

  3. Aragona, R.: Semi-invariants of symmetric quivers of finite type. Preprint, arXiv:0910.1070v3 [math.RT]. J. Pure Appl. Algebra (submitted)

  4. Assem, I., Simson, D., Skowronski, A.: Elements of the Representation Theory of Associative Algebras, vol. 1. London Mathematical Society Students Texts 65. Cambridge University Press, Cambridge (2006)

    Book  MATH  Google Scholar 

  5. Auslander, M., Reiten, I.: Representation theory of Artin algebras III: almost split sequences. Commun. Algebra 3(3), 239–294 (1975)

    Article  MathSciNet  MATH  Google Scholar 

  6. Bernstein, I.N., Gelfand, I.M., Ponomarev, V.A.: Coxeter functors and Gabriel’s theorem. Usp. Mat. Nauk 28, 19–33 (1973)

    MathSciNet  MATH  Google Scholar 

  7. Derksen, H., Weyman, J.: Semi-invariants of quivers and saturation for Littlewood-Richardson coefficients. J. Am. Math. Soc. 16, 467–479 (2000)

    Article  MathSciNet  Google Scholar 

  8. Derksen, H., Weyman, J.: Generalized quivers associated to reductive groups. Colloq. Math. 94(2), 151–173 (2002)

    Article  MathSciNet  MATH  Google Scholar 

  9. Dlab, V., Ringel, C.M.: Indecomposable representations of graphs and algebras. Mem. Am. Math. Soc. 173 (1976)

  10. Domokos, M., Zubkov, A.N.: Semi-invariants of quivers as determinants. Transform. Groups 6(1), 9–24 (2001)

    Article  MathSciNet  MATH  Google Scholar 

  11. Fulton, W., Harris, J.: Representation Theory; The First Course. Graduate Texts in Mathematics 129. Springer, New York (1991)

    Google Scholar 

  12. Igusa, K., Orr, K., Todorov, G., Weyman, J.: Cluster complexes via semi-invariants. Compos. Math. 145(4), 1001–1034 (2009)

    Article  MathSciNet  MATH  Google Scholar 

  13. Kac, V.G.: Infinite root systems representations of graphs and invariant theory. Invent. Math. 56, 57–92 (1980)

    Article  MathSciNet  MATH  Google Scholar 

  14. Lopatin, A.A.: Invariants of quivers under the action of classical groups. J. Algebra 321(4), 1079–1106 (2009)

    Article  MathSciNet  MATH  Google Scholar 

  15. Lopatin, A.A., Zubkov, A.N.: Semi-invariants of mixed representations of quivers. Transform. Groups 12(2), 341–369 (2007)

    Article  MathSciNet  MATH  Google Scholar 

  16. Macdonald, I.G.: Symmetric Functions and Hall Polynomials, 2nd edn. With Contributions by A. Zelevinsky. Oxford Mathematical Monographs. Oxford University Press, New York (1995)

    MATH  Google Scholar 

  17. Magyar, P., Weyman, J., Zelevinsky, A.: Multiple flag varieties of finite type. Adv. Math. 141(1), 97–118 (1999)

    Article  MathSciNet  MATH  Google Scholar 

  18. Procesi, C.: Lie Groups. An Approach through Invariants and Representations, Universitext. Springer, New York (2007)

    Google Scholar 

  19. Ringel, C.M.: Representations of K-species and bimodules. J. Algebra 41, 269–302 (1976)

    Article  MathSciNet  MATH  Google Scholar 

  20. Ringel, C.M.: The rational invariants of the tame quivers. Invent. Math. 58, 217–239 (1980)

    Article  MathSciNet  MATH  Google Scholar 

  21. Sato, M., Kimura, T.: A classification of irreducible prehomogeneous vector spaces and their relative invariants. Nagoya J. Math. 65, 1–155 (1977)

    MathSciNet  MATH  Google Scholar 

  22. Schofield, A.: Semi-invariants of quivers. J. Lond. Math. Soc. (2), 43(3), 385–395 (1991)

    Article  MathSciNet  MATH  Google Scholar 

  23. Schofield, A., Van den Bergh, M.: Semi-invariants of quivers for arbitrary dimension vectors. Indag. Math. (N.S.) 12(1), 125–138 (2001)

    Article  MathSciNet  MATH  Google Scholar 

  24. Shmelkin, D.A.: Signed quivers, symmetric quivers, and root systems. J. Lond. Math. Soc., II. Ser. 73(3), 586–606 (2006)

    Article  MathSciNet  MATH  Google Scholar 

  25. Skowronski, A., Weyman, J.: The algebras of semi-invariants of quivers. Transform. Groups 5(4), 361–402 (2000)

    Article  MathSciNet  MATH  Google Scholar 

  26. Zubkov, A.N.: Invariants of mixed representations of quivers I. J. Algebra Appl. 4(3), 245–285 (2005)

    Article  MathSciNet  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Riccardo Aragona.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Aragona, R. Semi-Invariants of Symmetric Quivers of Tame Type. Algebr Represent Theor 15, 1215–1260 (2012). https://doi.org/10.1007/s10468-011-9286-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10468-011-9286-2

Keywords

Mathematics Subject Classifications (2010)

Navigation