Skip to main content
Log in

Categorified Quantum sl(2) and Equivariant Cohomology of Iterated Flag Varieties

  • Published:
Algebras and Representation Theory Aims and scope Submit manuscript

Abstract

A 2-category was introduced in math.QA/0803.3652 that categorifies Lusztig’s integral version of quantum sl(2). Here we construct for each positive integer N a representation of this 2-category using the equivariant cohomology of iterated flag varieties. This representation categorifies the irreducible (N + 1)-dimensional representation of quantum sl(2).

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Bernstein, J., Frenkel, I., Khovanov, M.: A categorification of the temperley-lieb algebra and schur quotients of \(u(\mathfrak{sl}_2)\) via projective and zuckerman functors. Selecta Math. (N.S.) 5(2), 199–241 (1999). math.QA/0002087

    MathSciNet  MATH  Google Scholar 

  2. Beĭlinson, A.A., Lusztig, G., MacPherson, R.: A geometric setting for the quantum deformation of \({\rm GL}\sb n\). Duke Math. J. 61(2), 655–677 (1990)

    Article  MathSciNet  MATH  Google Scholar 

  3. Borel, A.: Sur la cohomologie des espaces fibrés principaux et des espaces homogènes de groupes de Lie compacts. Ann. Math. (2) 57, 115–207 (1953)

    Article  MathSciNet  Google Scholar 

  4. Borceux, F.: Handbook of categorical algebra, 1. In: Encyclopedia of Mathematics and its Applications, vol. 50. Cambridge University Press, Cambridge (1994)

    Google Scholar 

  5. Crane, L., Frenkel, I.B.: Four-dimensional topological quantum field theory, Hopf categories, and the canonical bases. J. Math. Phys. 35(10), 5136–5154 (1994). Topology and Physics, hep-th/9405183

    MathSciNet  MATH  Google Scholar 

  6. Chuang, J., Rouquier, R.: Derived equivalences for symmetric groups and \(\mathfrak{sl}\sb 2\)-categorification. Ann. Math. (2) 167(1), 245–298 (2008). math.RT/0407205

    Article  MathSciNet  MATH  Google Scholar 

  7. Frenkel, I., Khovanov, M., Stroppel, C.: A categorification of finite-dimensional irreducible representations of quantum sl(2) and their tensor products. Selecta Math. (N.S.) 12(3–4), 379–431 (2006). math.QA/0511467

    MathSciNet  MATH  Google Scholar 

  8. Fulton, W.: Young tableaux. In: London Mathematical Society Student Texts. With applications to representation theory and geometry, vol. 35. Cambridge University Press, Cambridge (1997)

    Google Scholar 

  9. Fulton, W.: Equivariant Cohomology in Algebraic Geometry. Eilenberg lectures, Columbia University, Spring 2007. Notes by Dave Anserson (2007). http://www.math.lsa.umich.edu/~dandersn/eilenberg/

  10. Ginzburg, V.: Lagrangian construction of the enveloping algebra U(sl n). C. R. Acad. Sci. Paris Sér. I Math. 312(12), 907–912 (1991)

    MathSciNet  MATH  Google Scholar 

  11. Hiller, H.: Geometry of Coxeter groups. In: Research Notes in Mathematics, vol. 54. Pitman (Advanced Publishing Program), Boston (1982)

    Google Scholar 

  12. Khovanov, M.: Nilcoxeter algebras categorify the Weyl algebra. Commun. Algebra 29(11), 5033–5052 (2001). math.RT/9906166

    Article  MathSciNet  MATH  Google Scholar 

  13. Kostant, B., Kumar, S.: The nil Hecke ring and cohomology of G/P for a Kac-Moody group G. Adv. Math. 62(3), 187–237 (1986)

    Article  MathSciNet  MATH  Google Scholar 

  14. Khovanov, M., Lauda, A.: A diagrammatic approach to categorification of quantum groups II. Trans. Am. Math. Soc. math.QA/0804.2080. (2009)

  15. Khovanov, M., Lauda, A.: A diagrammatic approach to categorification of quantum groups III. math.QA/0807.3250 (2008)

  16. Khovanov, M., Lauda, A.: A diagrammatic approach to categorification of quantum groups I. Representat. Theory 13, 309–347 (2009). math.QA/0803.4121

    Article  MathSciNet  MATH  Google Scholar 

  17. Khovanov, M., Rozansky, L.: Matrix factorizations and link homology. Fundam. Math. 199(1), 1–91 (2008). math.QA/0401268

    Article  MathSciNet  MATH  Google Scholar 

  18. Kumar, S.: Kac-Moody groups, their flag varieties and representation theory. In: Progress in Mathematics, vol. 204. Birkhäuser Boston, Boston (2002)

    Google Scholar 

  19. Lauda, A.D.: Frobenius algebras and ambidextrous adjunctions. Theory Appl. Categ. 16, 84–122 (2006). math.CT/0502550

    MathSciNet  MATH  Google Scholar 

  20. Lauda, A.D.: A categorification of quantum sl(2). math.QA/0803.3652 (2008)

  21. Lusztig, G.: Introduction to quantum groups. In: Progress in Mathematics, vol. 110. Birkhäuser Boston, Boston (1993)

    Google Scholar 

  22. Mazorchuk, V., Stroppel, C.: A combinatorial approach to functorial quantum sl(k) knot invariants. Am. J. Math. 131 (2009). math.QA/0709.1971

  23. Mackaay, M., Stošić, M., Vaz, P.: \(\mathfrak{sl}(N)\)-link homology (N ≥ 4) using foams and the Kapustin-Li formula. Geom. Topol. 13(2), 1075–1128 (2009). math.GT/0708.2228

    Article  MathSciNet  MATH  Google Scholar 

  24. Rouquier, R.: 2-Kac-Moody algebras. arXiv:0812.5023 (2008)

  25. Soergel, W.: The combinatorics of Harish-Chandra bimodules. J. Reine Angew. Math. 429, 49–74 (1992)

    Article  MathSciNet  MATH  Google Scholar 

  26. Stroppel, C.: A structure theorem for Harish-Chandra bimodules via coinvariants and Golod rings. J. Algebra 282(1), 349–367 (2004)

    Article  MathSciNet  MATH  Google Scholar 

  27. Tymoczko, J.S.: An introduction to equivariant cohomology and homology, following Goresky, Kottwitz, and MacPherson. In: Snowbird Lectures in Algebraic Geometry Contemp. Math., vol. 388, pp. 169–188. American Mathematical Society, Providence (2005)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Aaron D. Lauda.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Lauda, A.D. Categorified Quantum sl(2) and Equivariant Cohomology of Iterated Flag Varieties. Algebr Represent Theor 14, 253–282 (2011). https://doi.org/10.1007/s10468-009-9188-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10468-009-9188-8

Keywords

Mathematics Subject Classifications (2000)

Navigation