Skip to main content
Log in

Realizability of Two-dimensional Linear Groups over Rings of Integers of Algebraic Number Fields

  • Published:
Algebras and Representation Theory Aims and scope Submit manuscript

Abstract

Given the ring of integers O K of an algebraic number field K, for which natural numbers n there exists a finite group G ⊂ GL(n, O K ) such that O K G, the O K -span of G, coincides with M(n, O K ), the ring of (n × n)-matrices over O K ? The answer is known if n is an odd prime. In this paper we study the case n = 2; in the cases when the answer is positive for n = 2, for n = 2m there is also a finite group G ⊂ GL(2m, O K ) such that O K G = M(2m, O K ).

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Auslander, M., Goldman, O.: Maximal orders. Trans. Am. Math. Soc. 97, 1–24 (1960)

    MathSciNet  MATH  Google Scholar 

  2. Cliff, G., Ritter, J., Weiss, A.: Group representations and integrality. J. fur die reine und angew. Math. 426, 193–202 (1992)

    MathSciNet  MATH  Google Scholar 

  3. Cohen, A.M.: Finite quaternionic reflection groups. J. Algebra 64, 293–324 (1980)

    Article  MathSciNet  MATH  Google Scholar 

  4. Curtis, Ch., Reiner, I.: Represenation theory of finite groups and associative algebras (1967)

  5. Curtis, Ch., Reiner, I.: Methods of representation theory Wiley-Interscience. N.Y. (1990)

  6. Du Val, P.: Gomographies, quaternions and rotations (Ch. 2, section 10, pp. 22-25). Oxford University Press, Oxford (1964)

    Google Scholar 

  7. Fröhlich, A.: Discriminants of algebraic number fields. Math. Z. 74, 18–28 (1960)

    Article  MathSciNet  MATH  Google Scholar 

  8. Hasse, H.: Zur Geschlechtertheorie in quadratischen Zahlkörpern. J. Math. Soc. Jpn. 3(1), 45–51 (1951)

    Article  MathSciNet  MATH  Google Scholar 

  9. Hasse, H.: Über die Klassenzahl Abelscher Zahlkörpe. Akademie Verlag, Berlin (1952)

    Google Scholar 

  10. Hasse, H.: Number Theory. Akademie-Verlag, Berlin (1979)

    MATH  Google Scholar 

  11. Hecke, E.: Vorlesungen über die Theorie der algebraischen Zahlen. Leipzig (1923)

  12. Hilbert, D.: Über den Dirichletischen Zahlkörper. Math. Ann. 45, S. 309–340 (1894)

    Article  MathSciNet  Google Scholar 

  13. Jacobinski, H.: Über die Geschlechter von Gittern über Ordnungen. J. Reine Angew. Math. 230, S. 28–39 (1968)

    MathSciNet  Google Scholar 

  14. Jacobinski, H.: Genera and decompositions of lattices over orders. Acta Math. 121, 1–29 (1968)

    Article  MathSciNet  MATH  Google Scholar 

  15. Knebusch, M., Scharlau, W.: Algebraic theory of quadratic forms. In: Generic Methods and Pfister Forms. DMV Seminar 1, Birkhauser (1980)

  16. Mann, H.B.: On integral bases. Proc. Am. Math. Soc. 9, 167–173 (1958)

    Article  MATH  Google Scholar 

  17. Nelis, P.: Schur and projective Schur groups of number fields. Can. Math. 43(3), 540–558 (1991)

    Article  MathSciNet  MATH  Google Scholar 

  18. Pfister, A.: Zur Darstellung von -1 als Summe von Quadraten in einem Korper. J. Lond. Math. Soc. 40, 159–165 (1965)

    Article  MathSciNet  MATH  Google Scholar 

  19. Plesken, W., Nebe, G.: Finite rational matrix groups. Memoirs Amer. Math. 116(556), 1–73 (1995)

    MathSciNet  Google Scholar 

  20. Rehm, H.P.: On a theorem of Gauss concerning the number of integral solutions of the equation x 2 + y 2 + z 2 = m. In “Ternary quadratic forms and norms. Semin. 74/75”. Lect. Notes Pure Appl. Math. 79, 31–38 (1982)

    Google Scholar 

  21. Reiner, I.: Maximal Orders. Academic, London (1975)

    MATH  Google Scholar 

  22. Sehgal, S.K., Zassenhaus, H.: On the supercentre of a group and its ring theoretic generalization. Integral representations and applications, Proc. Conf., Oberwolfach 1980. Lect. Notes Math. 882, 117–144 (1981)

    Article  MathSciNet  Google Scholar 

  23. Serre, J.-P.: Cours d’arithmétique. Paris (1970)

  24. Van Oystaeyen, F., Zalesskii, A.E.: Finite groups over arithmetic rings and globally irreducible representations. J. Algebra 215, 418–436 (1999)

    Article  MathSciNet  MATH  Google Scholar 

  25. Venkov, B.A.: On the arithmetic of quaternions. Izv. Ross. Akad. Sci. ser 6, 16, 205–246 (1922)

    Google Scholar 

  26. Venkov, B.A.: On the arithmetic of quaternions. Izv. Ross. Akad. Sci. ser. 7, 16(5), 489–504 (1929)

    Google Scholar 

  27. Venkov, B.A.: On the arithmetic of quaternions. Izv. Ross. Akad. Sci. ser. 7, 16(6), 535–562 (1929)

    Google Scholar 

  28. Venkov, B.A.: On the arithmetic of quaternions. Izv. Ross. Akad. Sci. ser. 7, 16(7), 607–622 (1929)

    Google Scholar 

  29. Vignéras, M.F.: Arithmétique des algèbres de quaternions. In: Lect. Notes in Math., vol. 397. Springer, New York (1974)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Dmitry Malinin.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Malinin, D., Van Oystaeyen, F. Realizability of Two-dimensional Linear Groups over Rings of Integers of Algebraic Number Fields. Algebr Represent Theor 14, 201–211 (2011). https://doi.org/10.1007/s10468-009-9184-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10468-009-9184-z

Keywords

Mathematics Subject Classifications (2000)

Navigation