Skip to main content
Log in

Universal Deformation Rings for the Symmetric Group S 4

  • Published:
Algebras and Representation Theory Aims and scope Submit manuscript

Abstract

Let k be an algebraically closed field of characteristic 2, and let W be the ring of infinite Witt vectors over k. Let S 4 denote the symmetric group on 4 letters. We determine the universal deformation ring R(S 4,V) for every kS 4-module V which has stable endomorphism ring k and show that R(S 4,V) is isomorphic to either k, or W[t]/(t 2,2t), or the group ring W[ℤ/2]. This gives a positive answer in this case to a question raised by the first author and Chinburg whether the universal deformation ring of a representation of a finite group with stable endomorphism ring k is always isomorphic to a subquotient ring of the group ring over W of a defect group of the modular block associated to the representation.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Alperin, J.L.: Local Representation Theory. Modular Representations as an Introduction to the Local Representation Theory of Finite Groups. Cambridge Studies in Advanced Mathematics, vol. 11. Cambridge University Press, Cambridge (1986)

    Google Scholar 

  2. Auslander, M., Carlson, J.F.: Almost-split sequences and group rings. J. Algebra 103, 122–140 (1986)

    Article  MATH  MathSciNet  Google Scholar 

  3. Bleher, F.M.: Universal deformation rings and Klein four defect groups. Trans. Amer. Math. Soc. 354, 3893–3906 (2002)

    Article  MATH  MathSciNet  Google Scholar 

  4. Bleher, F.M.: Universal deformation rings and dihedral defect groups. Trans. Amer. Math. Soc. Preprint, available at ArXiv:math/0607571 [math.RT] (2007)

  5. Bleher, F.M.: Universal deformation rings for dihedral 2-groups. J. London Math. Soc. (2009, in press). doi:10.1112/jlms/jdn071

  6. Bleher, F.M., Chinburg, T.: Universal deformation rings and cyclic blocks. Math. Ann. 318, 805–836 (2000)

    Article  MATH  MathSciNet  Google Scholar 

  7. Bleher, F.M., Chinburg, T.: Universal deformation rings need not be complete intersections. C. R. Math. Acad. Sci. Paris 342, 229–232 (2006)

    MATH  MathSciNet  Google Scholar 

  8. Bleher, F.M., Chinburg, T.: Universal deformation rings need not be complete intersections. Math. Ann. 337, 739–767 (2007)

    Article  MATH  MathSciNet  Google Scholar 

  9. Breuil, C., Conrad, B., Diamond, F., Taylor, R.: On the modularity of elliptic curves over ℚ: wild 3-adic exercises. J. Amer. Math. Soc. 14, 843–939 (2001)

    Article  MATH  MathSciNet  Google Scholar 

  10. Butler, M.C.R., Ringel, C.M.: Auslander-Reiten sequences with few middle terms and applications to string algebras. Comm. Algebra 15, 145–179 (1987)

    Article  MATH  MathSciNet  Google Scholar 

  11. Carlson, J.F., Thévenaz, J.: The classification of endo-trivial modules. Invent. Math. 158, 389–411 (2004)

    MATH  MathSciNet  Google Scholar 

  12. Cornell, G., Silverman, J.H., Stevens, G. (eds.): Modular Forms and Fermat’s Last Theorem (Boston, 1995). Springer, Berlin Heidelberg New York (1997)

    Google Scholar 

  13. de Smit, B., Lenstra, H.W.: Explicit construction of universal deformation rings. In: Modular Forms and Fermat’s Last Theorem (Boston, MA, 1995), pp. 313–326. Springer, Berlin Heidelberg New York (1997)

    Google Scholar 

  14. Erdmann, K.: Blocks of tame representation type and related algebras. Lecture Notes in Mathematics, vol. 1428. Springer, Berlin Heidelberg New York (1990)

    MATH  Google Scholar 

  15. Krause, H.: Maps between tree and band modules. J. Algebra 137, 186–194 (1991)

    Article  MATH  MathSciNet  Google Scholar 

  16. Linckelmann, M.: A derived equivalence for blocks with dihedral defect groups. J. Algebra 164, 244–255 (1994)

    Article  MATH  MathSciNet  Google Scholar 

  17. Linckelmann, M.: The source algebras of blocks with a Klein four defect group. J. Algebra 167, 821–854 (1994)

    Article  MATH  MathSciNet  Google Scholar 

  18. Llosent, G.: Stable endomorphism rings and Ext groups for the symmetric group S 4. Dissertation, University of Iowa (2007)

  19. Mazur, B.: Deforming Galois representations. In: Galois Groups Over ℚ (Berkeley, CA, 1987), pp. 385–437. Springer, Berlin Heidelberg New York (1989)

    Google Scholar 

  20. Taylor, R., Wiles, A.: Ring-theoretic properties of certain Hecke algebras. Ann. Math. 141, 553–572 (1995)

    Article  MATH  MathSciNet  Google Scholar 

  21. Wiles, A.: Modular elliptic curves and Fermat’s last theorem. Ann. Math. 141, 443–551 (1995)

    Article  MATH  MathSciNet  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Frauke M. Bleher.

Additional information

The first author was supported in part by NSF Grants DMS01-39737 and DMS06-51332 and NSA Grant H98230-06-1-0021.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Bleher, F.M., Llosent, G. Universal Deformation Rings for the Symmetric Group S 4 . Algebr Represent Theor 13, 255–270 (2010). https://doi.org/10.1007/s10468-008-9120-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10468-008-9120-7

Keywords

Mathematics Subject Classifications (2000)

Navigation