Skip to main content
Log in

The Tilting Tensor Product Theorem and Decomposition Numbers for Symmetric Groups

  • Published:
Algebras and Representation Theory Aims and scope Submit manuscript

Abstract

We show how the tilting tensor product theorem for algebraic groups implies a reduction formula for decomposition numbers of the symmetric group. We use this to prove generalisations of various theorems of Erdmann and of James and Williams.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Andersen, H.H.: Tilting modules for algebraic groups. In: Carter, R., Saxl, J. (eds.) Algebraic Groups and their Representations, vol. 517 of Nato ASI Series, Series C, pp. 25–42 (1998)

  2. Andersen, H.H., Jantzen, J.C., Soergel, W.: Representations of quantum groups at a p-th root of unity and of semisimple groups in characteristic p: independence of p. Astérisque 220 (1994)

  3. Cox, A.G.: Ext1 for Weyl modules for q-GL(2,k). Math. Proc. Cambridge Philos. Soc. 124, 231–251 (1998)

    Article  MATH  MathSciNet  Google Scholar 

  4. Cox, A.G.: Decomposition numbers for distant Weyl modules. J. Algebra 243, 448–472 (2001)

    Article  MATH  MathSciNet  Google Scholar 

  5. Dipper, R., James, G.D.: Representations of Hecke algebras of general linear groups. Proc. London Math. Soc. 52(3), 20–52 (1986)

    Article  MATH  MathSciNet  Google Scholar 

  6. Donkin, S.: On tilting modules for algebraic groups. Math. Z. 212, 39–60 (1993)

    Article  MATH  MathSciNet  Google Scholar 

  7. Donkin, S.: The q-Schur algebra, vol. 253 of LMS Lecture Notes Series. Cambridge University Press (1998)

  8. Erdmann, K.: Symmetric groups and quasi-hereditary algebras. In: Dlab, V., Scott, L.L. (eds.) Finite Dimensional Algebras and Related Topics, pp. 123–161. Kluwer, Dordrecht (1994)

    Google Scholar 

  9. Erdmann, K.: Decomposition numbers for symmetric groups and composition factors of Weyl modules. J. Algebra 180, 316–320 (1996)

    Article  MATH  MathSciNet  Google Scholar 

  10. James, G.D.: On the decomposition matrices of the symmetric groups, I. J. Algebra 43, 42–44 (1976)

    Article  MATH  MathSciNet  Google Scholar 

  11. James, G.D.: Representations of the symmetric group over the field of order 2. J. Algebra 38, 280–308 (1976)

    Article  MATH  MathSciNet  Google Scholar 

  12. James, G.D., Kerber, A.: The Representation Theory of the Symmetric Group, vol. 16 of Encyclopedia of Mathematics and its Applications. Addison-Wesley, Reading, MA (1981)

    Google Scholar 

  13. James, G.D., Williams, A.L.: Decomposition numbers of symmetric groups by induction. J. Algebra 228, 119–142 (2000)

    Article  MATH  MathSciNet  Google Scholar 

  14. Jantzen, J.C.: Representations of algebraic groups, vol. 107 of Mathematical Surveys and Monographs. AMS, 2nd edn. (2003) (note: all citations except those involving tilting modules can also be found in the first edition)

  15. Jensen, J.G.: On the character of some modular indecomposable tilting modules for SL3. J. Algebra 232, 397–419 (2000)

    Article  MATH  MathSciNet  Google Scholar 

  16. Lascoux, A., Leclerc, B., Thibon, J.-Y.: Hecke algebras at roots of unity and crystal bases of quantum affine algebras. Comm. Math. Phys. 181, 205–263 (1996)

    Article  MATH  MathSciNet  Google Scholar 

  17. Leclerc, B.: Decomposition numbers and canonical bases. Algebr. Represent. Theory 3, 277–287 (2000)

    Article  MATH  MathSciNet  Google Scholar 

  18. Lusztig, G.: Some problems in the representation theory of finite Chevalley groups. In: Mason, G., Cooperstein, B. (eds.) The Santa Cruz Conference on Finite Groups, vol. 37, pp. 313–317 (1979)

  19. Rasmussen, T.E.: Multiplicities of second cell tilting modules. J. Algebra 288, 1–19 (2005)

    Article  MATH  MathSciNet  Google Scholar 

  20. Ringel, C.M.: The category of modules with good filtrations over a quasi-hereditary algebra has almost split sequences. Math. Z. 208, 209–225 (1991)

    Article  MathSciNet  Google Scholar 

  21. Soergel, W.: Charakterformeln für Kipp-Moduln über Kac-Moody-Algebren. Represent. Theory 1, 115–132 (1997)

    Article  MATH  MathSciNet  Google Scholar 

  22. Soergel, W.: Kazhdan-Lusztig polynomials and a combinatoric for tilting modules. Represent. Theory 1, 83–114 (1997)

    Article  MATH  MathSciNet  Google Scholar 

  23. Steinberg, R.: Representations of algebraic groups. Nagoya Math. J. 22, 33–56 (1957)

    MathSciNet  Google Scholar 

  24. To Law, K.W.: Results on decomposition matrices for the symmetric groups. Ph.D. thesis, Cambridge (1983)

  25. Williams, A.L.: Symmetric group decomposition numbers for some three-part partitions. Comm. Algebra 34, 1599–1613 (2006)

    MATH  MathSciNet  Google Scholar 

  26. Xanthopoulos, S.: On a question of Verma about indecomposable representations of algebraic groups and of their Lie algebras. Ph.D. thesis, London (1992)

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Anton Cox.

Additional information

Supported by Nuffield grant scheme NUF-NAL 02. Preliminary work on this paper was undertaken at the Isaac Newton Institute as part of the programme on Symmetric Functions and Macdonald Polynomials.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Cox, A. The Tilting Tensor Product Theorem and Decomposition Numbers for Symmetric Groups. Algebr Represent Theor 10, 307–314 (2007). https://doi.org/10.1007/s10468-007-9051-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10468-007-9051-8

Keywords

Mathematics Subject Classifications (2000)

Navigation