Skip to main content
Log in

Applications of Duality to the Pure-injective Envelope

  • Published:
Algebras and Representation Theory Aims and scope Submit manuscript

Abstract

Given an R-T-bimodule R K T and R-S-bimodule R M S , we study how properties of R K T affect the K-double dual M** = Hom T [Hom R (M, K), K] considered as a right S-module. If R K is a cogenerator, then for every R-S-bimodule, the natural morphism Φ M : MM** is a pure-monomorphism of right S-modules. If R K is the minimal (injective) cogenerator and K T is quasi-injective, then M ** is a pure-injective right S-module. If R K is the minimal (injective) cogenerator, and T = End R K it is shown that K T is quasi-injective if and only if the K-topology on R is linearly compact. If the R K-topology on R is of finite type, then the natural morphism Φ R : RR** is the pure-injective envelope of R R as a right module over itself.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Albu, T., Wisbauer, R.: M-density, M-adic completion and M-subgeneration. Rend. Sem. Mat. Univ. Padova. 98, 141–159 (1997)

    MATH  MathSciNet  Google Scholar 

  2. Camillo, V., Krause, G.: Problem 12. In: Gordon, R. (ed.) Ring Theory, Proceedings of a Conference on Ring Theory, Park City, Utah, p. 377. Academic Press, New York (1972)

    Google Scholar 

  3. Fuchs, L., Salce, L.: Modules over non-Noetherian domains. In: Mathematical Surveys and Monographs, vol. 84. American Mathematical Society, Providence, Rhode Island (2001)

    Google Scholar 

  4. Goodearl, K., Warfield, R.: An Introduction to Noncommutative Noetherian Rings. London Mathematical Society Student Texts 16, Cambridge University Press, UK (1989)

    Google Scholar 

  5. Herzog, I.: Finite matrix topologies. J. Algebra 282, 157–171 (2004)

    Article  MATH  MathSciNet  Google Scholar 

  6. Kiełpinski, R.: On Γ-pure-injective modules. Bull. Acad. Pol. Sci. 15, 127–131 (1967)

    Google Scholar 

  7. Lazard: Autour de la platitude. Bull. Soc. Math. France 97, 81–128 (1969)

    MATH  MathSciNet  Google Scholar 

  8. Menini, C.: A Characterization of linearly compact modules. Math. Ann. 271, 1–11 (1985)

    Article  MATH  MathSciNet  Google Scholar 

  9. Menini, C., Orsatti, A.: Good dualities and strongly quasi-injective modules. Ann. Mat. Pura Appl. CXXVII(IV), 187–230 (1981)

    Article  MathSciNet  Google Scholar 

  10. Menini, C., Orsatti, A.: Topologically left Artinian rings. J. Algebra 93(2), 475–508 (1985)

    Article  MATH  MathSciNet  Google Scholar 

  11. Mohamed, S.H., Müller, B.: Continuous and discrete modules. In: London Mathematical Society Lecture Note Series, vol. 147. Cambridge University Press, UK (1990)

    Google Scholar 

  12. Müller, B.: Linear compactness and Morita duality. J. Algebra 16, 60–66 (1970)

    Article  MATH  MathSciNet  Google Scholar 

  13. Prest, M.: Model theory and modules. In: London Mathematical Society Lecture Note Series, vol. 130. Cambridge University Press, UK (1988)

    Google Scholar 

  14. Prest, M., Puninski, G.: Some model theory over hereditary noetherian domains. J. Algebra 211, 268–297 (1999)

    Article  MATH  MathSciNet  Google Scholar 

  15. Sabbagh, G., Eklof, P.: Definability problems for modules and rings. J. Symbolic Logic 36, 623–649 (1971)

    Article  MathSciNet  Google Scholar 

  16. Sandomierski, F.L.: Linearly compact modules and local Morita duality. In: Gordon, R. (ed.) Ring Theory, Proceedings of a Conference on Ring Theory, Park City, Utah, pp. 333–346. Academic Press, New York (1972)

    Google Scholar 

  17. Stenström, B.: Rings of Quotients. Springer, Berlin Heidelberg New York (1975)

    MATH  Google Scholar 

  18. Warfield, R.: Purity and algebraic compactness for modules. Pacific J. Math. 28, 699–719 (1969)

    MATH  MathSciNet  Google Scholar 

  19. Wisbauer, R.: Foundations of module and ring theory. In: Algebra Logic and Application, vol. 3. Gordon and Breach, New York (1991)

    Google Scholar 

  20. Zelmanowitz, J.M.: Duality theory for quasi-injective modules. In: Methods in Ring Theory, Antwerp, Belgium 1984, pp. 551–566. Reidel, Amsterdam (1984)

    Google Scholar 

  21. Ziegler, M.: Model theory of modules. Ann. Pure Appl. Logic 26, 149–213 (1984)

    Article  MATH  MathSciNet  Google Scholar 

  22. Zimmermann, W.: (Σ-)algebraic compactness of rings. J. Pure Appl. Algebra 23(3), 319–328 (1982)

    Article  MATH  MathSciNet  Google Scholar 

  23. Zimmermann-Huisgen, B., Zimmermann, W.: Algebraically compact rings and modules. Math. Z. 161, 81–93 (1978)

    Article  MATH  MathSciNet  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ivo Herzog.

Additional information

The author is partially supported by NSF Grant DMS-02-00698.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Herzog, I. Applications of Duality to the Pure-injective Envelope. Algebr Represent Theor 10, 135–155 (2007). https://doi.org/10.1007/s10468-006-9039-9

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10468-006-9039-9

Key words

Mathematics Subject Classifications (2000)

Navigation