Skip to main content
Log in

Representations and Cocycle Twists of Color Lie Algebras

  • Published:
Algebras and Representation Theory Aims and scope Submit manuscript

Abstract

We study relations between finite-dimensional representations of color Lie algebras and their cocycle twists. Main tools are the universal enveloping algebras and their FCR-properties (finite-dimensional representations are completely reducible.) Cocycle twist preserves the FCR-property. As an application, we compute all finite dimensional representations (up to isomorphism) of the color Lie algebra \({\text{sl}}^{c}_{2} \).

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Artin, M., Schelter, W., Tate, J.: Quantum deformations of \(GL_{\,n}\). Comm. Pure Appl. Math. XLIV, 879–895 (1990)

    MathSciNet  Google Scholar 

  2. Drozd, Yu. A., Kirichenko, V.V.: Finite Dimensional Algebras. Springer, Berlin, Heidelberg, New York (1993)

    MATH  Google Scholar 

  3. Gorodnii, M. F., Podkolzin, G. B.: Irreducible representations of a graded Lie algebra, in Spectral theory of Operators and infinite-dimensional Analysis, Inst. Math. Acad. Sci. UkrSSR, Kiev, pp. 66–76. (1984)

  4. Hu, N.H.: Quantum group structure associated to the quantum affine space, preprint (2004)

  5. Humphreys, J.E.: Introduction to Lie Algebras and Representation Theory, Graduate Texts in Math., vol. 9. Springer, Berlin Heidelberg New York (1972)

    Google Scholar 

  6. Karpilovsky, G.: Projective Representations of Finite Groups, Monographs in Pure and Applied Math., vol. 94. Marcel Dekker, New York (1985)

    Google Scholar 

  7. Kharchenko, V.K.: An algebra of skew primitive elements, math.QA/0006077

  8. Kirkman, E.E., Small, L.W.; Examples of FCR-algebras. Comm. Algebra 30(7), 3311–3326 (2002)

    Article  MATH  MathSciNet  Google Scholar 

  9. Kraft, H., Small, L.W.: Invariant algebras and completely reducible representations. Math. Res. Lett. 1, 297–307 (1994)

    MATH  MathSciNet  Google Scholar 

  10. Kraft, H., Small, L.W., Wallach, N.R.: Properties and examples of FCR-algebras. Manuscripta Math. 104, 443–450 (2001)

    Article  MATH  MathSciNet  Google Scholar 

  11. McConnell, J.C., Robson, J.C.: Noncommuative Noetherian Rings. Chichester, Wiley (1987)

    Google Scholar 

  12. Nǎstǎsescu, C., van Oystaeyen, F.: Dimension of Ring Theory, Mathematics and Its Applications. Reidel, Dordrecht, Holland (1987)

    Google Scholar 

  13. Nǎstǎsescu, C., van Oystaeyen, F.: Methods of Graded Rings, Lecture Notes in Math., vol. 1836. Springer, Berlin Heidelberg New York (2004)

    Google Scholar 

  14. Ostrovskyi, V.L., Silvestrov, S.D.: Representations of the real forms of a graded analogue of the Lie algebra \(sl(2,\mathbb{C})\). Ukr. Mat. Zhurn. 44(11), 1518–1524 (1992)

    Google Scholar 

  15. Rittenberg, V., Wyler, D.: Generalized superalgebras. Nuclear Phys. B 139, 189–202 (1978)

    MathSciNet  Google Scholar 

  16. Scheunert, M.: Generalized Lie algebras. J. Math. Phys. 20, 712–720 (1979)

    Article  MATH  MathSciNet  Google Scholar 

  17. Scheunert, M.: The Theory of Lie Superalgebras, Lecture Notes in Math., vol. 716. Springer, Berlin Heidelberg New York (1979)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to F. Van Oystaeyen.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Chen, XW., Silvestrov, S.D. & Van Oystaeyen, F. Representations and Cocycle Twists of Color Lie Algebras. Algebr Represent Theor 9, 633–650 (2006). https://doi.org/10.1007/s10468-006-9027-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10468-006-9027-0

Mathematics Subject Classifications (2000)

Key words

Navigation