Skip to main content
Log in

Parametric estimation of spatial–temporal point processes using the Stoyan–Grabarnik statistic

  • Published:
Annals of the Institute of Statistical Mathematics Aims and scope Submit manuscript

Abstract

A novel estimator for the parameters governing spatial–temporal point processes is proposed. Unlike the maximum likelihood estimator, the proposed estimator is fast and easy to compute, and does not require the computation or approximation of a computationally expensive integral. This parametric estimator is based on the Stoyan–Grabarnik (sum of inverse intensity) statistic and is shown to be consistent, under quite general conditions. Simulations are presented demonstrating the performance of the estimator.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  • Baddeley, A., Turner, R. (2005). Spatstat: An R package for analyzing spatial point patterns. Journal of statistical software, 12, 1–42.

    Article  Google Scholar 

  • Baddeley, A., Turner, R., Møller, J., Hazelton, M. (2005). Residual analysis for spatial point processes (with discussion). Journal of the Royal Statistical Society: Series B (Statistical Methodology), 67(5), 617–666.

    Article  MathSciNet  MATH  Google Scholar 

  • Berman, M., Turner, T. R. (1992). Approximating point process likelihoods with glim. Journal of the Royal Statistical Society: Series C (Applied Statistics), 41(1), 31–38.

    MATH  Google Scholar 

  • Błaszczyszyn, B., Schott, R. (2003). Approximate decomposition of some modulated-Poisson Voronoi tessellations. Advances in Applied Probability, 35(4), 847–862.

    Article  MathSciNet  MATH  Google Scholar 

  • Błaszczyszyn, B., Schott, R. (2005). Approximations of functionals of some modulated-Poisson Voronoi tessellations with applications to modeling of communication networks. Japan Journal of Industrial and Applied Mathematics, 22(2), 179–204.

    Article  MathSciNet  MATH  Google Scholar 

  • Cronie, O., Van Lieshout, M. N. M. (2018). A non-model-based approach to bandwidth selection for kernel estimators of spatial intensity functions. Biometrika, 105(2), 455–462.

    Article  MathSciNet  MATH  Google Scholar 

  • Daley, D. J., Jones, D. V. (2003). An introduction to the theory of point processes: Elementary theory of point processes. New York, NY: Springer.

    MATH  Google Scholar 

  • Daley, D. J., Vere-Jones, D. (2007). An introduction to the theory of point processes: General theory and structure. New York, NY: Springer.

    MATH  Google Scholar 

  • Diggle, P. J. (2006). Spatio-temporal point processes, partial likelihood, foot and mouth disease. Statistical Methods in Medical Research, 15(4), 325–336.

    Article  MathSciNet  MATH  Google Scholar 

  • Diggle, P. J., Kaimi, I., Abellana, R. (2010). Partial-likelihood analysis of spatio-temporal point-process data. Biometrics, 66(2), 347–354.

    Article  MathSciNet  MATH  Google Scholar 

  • Harte, D. (2010). Ptprocess: An R package for modelling marked point processes indexed by time. Journal of Statistical Software, 35, 1–32.

    Article  Google Scholar 

  • Krickeberg, K. (1982). Processus ponctuels en statistique. In ecole d’eté de probabilités de saint-flour X-1980 (pp. 205–313). Berlin, Heidelberg: Springer.

  • Ogata, Y. (1978). The asymptotic behaviour of maximum likelihood estimators for stationary point processes. Annals of the Institute of Statistical Mathematics, 30(2), 243–261.

    Article  MathSciNet  MATH  Google Scholar 

  • Ogata, Y. (1998). Space-time point-process models for earthquake occurrences. Annals of the Institute of Statistical Mathematics, 50(2), 379–402.

    Article  MATH  Google Scholar 

  • Ogata, Y., Katsura, K. (1988). Likelihood analysis of spatial inhomogeneity for marked point patterns. Annals of the Institute of Statistical Mathematics, 40(1), 29–39.

    Article  MathSciNet  MATH  Google Scholar 

  • Reinhart, A. (2018). A review of self-exciting spatio-temporal point processes and their applications. Statistical Science, 33(3), 299–318.

    MathSciNet  MATH  Google Scholar 

  • Schoenberg, F. P. (2013). Facilitated estimation of ETAS. Bulletin of the Seismological Society of America, 103(1), 601–605.

    Article  Google Scholar 

  • Stoyan, D., Grabarnik, P. (1991). Second-order characteristics for stochastic structures connected with Gibbs point processes. Mathematische Nachrichten, 151(1), 95–100.

    Article  MathSciNet  MATH  Google Scholar 

Download references

Acknowledgements

Thanks to Adrian Baddeley for suggesting estimation based on kernel smoothing the scaled residual field, to Peter Diggle for suggesting the partial likelihood as an alternative way of avoiding having to compute the integral in the MLE, to Aila Saarka for suggesting that the SG estimator could be used to obtain starting values for the MLE, and to James Molyneux for his work on selecting partitions. This material is based upon work supported by the National Science Foundation under grant number DMS-2124433.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Frederic Schoenberg.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kresin, C., Schoenberg, F. Parametric estimation of spatial–temporal point processes using the Stoyan–Grabarnik statistic. Ann Inst Stat Math 75, 887–909 (2023). https://doi.org/10.1007/s10463-023-00866-6

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10463-023-00866-6

Keywords

Navigation