Skip to main content
Log in

Whittle estimation for continuous-time stationary state space models with finite second moments

  • Published:
Annals of the Institute of Statistical Mathematics Aims and scope Submit manuscript

Abstract

We consider Whittle estimation for the parameters of a stationary solution of a continuous-time linear state space model sampled at low frequencies. In our context, the driving process is a Lévy process which allows flexible margins of the underlying model. The Lévy process is supposed to have finite second moments. Then, the classes of stationary solutions of linear state space models and of multivariate CARMA processes coincide. We prove that the Whittle estimator, which is based on the periodogram, is strongly consistent and asymptotically normal. A comparison with ARMA models shows that in the continuous-time setting the limit covariance matrix of the estimator has an additional term for non-Gaussian models. Thereby, we investigate the asymptotic normality of the integrated periodogram. Furthermore, for univariate processes we introduce an adjusted version of the Whittle estimator and derive its asymptotic properties. The practical applicability of our estimators is demonstrated through a simulation study.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Bardet, J.-M., Doukhan, P., León, J. R. (2008). Uniform limit theorems for the integrated periodogram of weakly dependent time series and their applications to Whittle’s estimate. Journal of Time Series Analysis, 29(5), 906–945.

    Article  MathSciNet  Google Scholar 

  • Barndorff-Nielsen, O. E. (1997). Normal inverse Gaussian distributions and stochastic volatility modelling. Scandinavian Journal of Statistics, 24(1), 1–13.

    Article  MathSciNet  Google Scholar 

  • Blevins, J. (2017). Identifying restrictions for finite parameter continuous time models with discrete time data. Econometric Theory, 33, 739–754.

    Article  MathSciNet  Google Scholar 

  • Brewer, J. (1978). Kronecker products and matrix calculus in system theory. IEEE Transactions on Circuits and Systems. I. Regular Papers, 25(9), 772–781.

    Article  MathSciNet  Google Scholar 

  • Brockwell, P. (2014). Recent results in the theory and applications of CARMA processes. Annals of the Institute of Statistical Mathematics, 66(4), 647–685.

    Article  MathSciNet  Google Scholar 

  • Brockwell, P. J., Davis, R. A. (1991). Time Series: Theory and Methods. Springer Series in Statistics.

  • Brockwell, P. J., Lindner, A. (2009). Existence and uniqueness of stationary Lévy-driven CARMA processes. Stochastic Processes and their Applications, 119(8), 2660–2681.

    Article  MathSciNet  Google Scholar 

  • Brockwell, P. J., Lindner, A. (2019). Sampling, embedding and inference for CARMA processes. Journal of Time Series Analysis, 40(2), 163–181.

    Article  MathSciNet  Google Scholar 

  • Chambers, M. J., McCrorie, J. R., Thornton, M. A. (2018). Continuous time modelling based on an exact discrete time representation. In K. van Montfort, J. Oud & M. Voelkle (Eds.), Continuous time modeling in the behavioral and related sciences (pp. 317–357). Springer.

  • Dahlhaus, R. (1988). Empirical spectral processes and their applications to time series analysis. Stochastic Processes and their Applications, 30(1), 69–83.

    Article  MathSciNet  Google Scholar 

  • Dahlhaus, R., Polonik, W. (2006). Nonparametric quasi-maximum likelihood estimation for Gaussian locally stationary processes. The Annals of Statistics, 34(6), 2790–2824.

    Article  MathSciNet  Google Scholar 

  • Dahlhaus, R., Polonik, W. (2009). Empirical spectral processes for locally stationary time series, Bernoulli, 15, 1–39.

  • Dahlhaus, R., Pötscher, B. (1989). Convergence results for maximum likelihood type estimators in multivariable ARMA models II. Journal of Multivariate Analysis, 30(2), 241–244.

    Article  MathSciNet  Google Scholar 

  • Deistler, M., Dunsmuir, W., Hannan, E. J. (1978). Vector linear time series models: Corrections and extensions. Advances in Applied Probability, 10(2), 360–372.

    Article  MathSciNet  Google Scholar 

  • Dunsmuir, W., Hannan, E. J. (1976). Vector linear time series models. Advances in Applied Probability, 8(2), 339–364.

    Article  MathSciNet  Google Scholar 

  • Fasen, V. (2013). Statistical inference of spectral estimation for continuous-time MA processes with finite second moments. Mathematical Methods of Statistics, 22(4), 283–309.

    Article  MathSciNet  Google Scholar 

  • Fasen, V., Fuchs, F. (2013). Spectral estimates for high-frequency sampled continuous-time autoregressive moving average processes. Journal of Time Series Analysis, 34(5), 532–551.

    Article  MathSciNet  Google Scholar 

  • Fasen-Hartmann, V., Kimmig, S. (2020). Robust estimation of continuous-time ARMA models via indirect inference. Journal of Time Series Analysis, 41, 620–651.

    Article  MathSciNet  Google Scholar 

  • Fasen-Hartmann, V., Scholz, M. (2019). Quasi-maximum likelihood estimation for cointegrated solutions of continuous-time state space models observed at discrete time points. Electronic Journal of Statistics, 13(2), 5151–5212.

    Article  MathSciNet  Google Scholar 

  • Guidorzi, R. (1975). Canonical structures in the identification of multivariable systems. Automatica, 11(4), 361–374.

    Article  MathSciNet  Google Scholar 

  • Hannan, E. J. (2009). Multiple time series. Wiley series in probability and mathematical statistics. Wiley.

  • Hannan, E. J., Deistler, M. (1988). The statistical theory of linear systems. Wiley.

  • Hansen, H. P., Sergant, T. (1983). The dimensionality of the aliasing problem in models with rational spectral densities. Econometrica, 51, 377–387.

    Article  MathSciNet  Google Scholar 

  • Harvey, A. C., Stock, J. H. (1985). The estimation of higher-order continuous time autoregressive models. Econometric Theory, 1(1), 97–117.

    Article  Google Scholar 

  • Harvey, A. C., Stock, J. H. (1988). Continuous time autoregressive models with common stochastic trends. Journal of Economic Dynamics, Control, 12(2–3), 365–384.

    Article  MathSciNet  Google Scholar 

  • Harvey, A. C., Stock, J. H. (1989). Estimating integrated higher-order continuous time autoregressions with an application to money-income causality. Journal of Econometrics, 42(3), 319–336.

    Article  MathSciNet  Google Scholar 

  • Körner, T. W. (1989). Fourier analysis. Cambridge University Press.

  • Lütkepohl, H. (2005). New introduction to multiple time series analysis. Springer.

  • Marquardt, T., Stelzer, R. (2007). Multivariate CARMA processes. Stochastic Processes and their Applications, 117(1), 96–120.

    Article  MathSciNet  Google Scholar 

  • Mikosch, T., Norvaiša, R. (1997). Uniform convergence of the empirical spectral distribution function. Stochastic Processes and their Applications, 70(1), 85–114.

    Article  MathSciNet  Google Scholar 

  • Mikosch, T., Gadrich, T., Klüppelberg, C., Adler, R. J. (1995). Parameter estimation for ARMA models with infinite variance innovations. The Annals of Statistics, 23(1), 305–326.

    Article  MathSciNet  Google Scholar 

  • Newey, K., McFadden, D. (1994). Large sample estimation and hypothesis. In R. F. Engle & D. McFadden (Eds.), Handbook of econometrics (Vol. 4, pp. 2112–2245). Elsevier.

  • Øigård, T. A., Hanssen, A., Hansen, R. E., Godtliebsen, F. (2005). EM-estimation and modeling of heavy-tailed processes with the multivariate normal inverse Gaussian distribution. Signal Processing, 85(8), 1655–1673.

    Article  Google Scholar 

  • Phillips, P. C. (1973). The problem of identification in finite parameter continuous time models. Journal of Econometrics, 1, 351–362.

    Article  Google Scholar 

  • Priestley, M. B. (1981). Spectral analysis and time series. Academic Press Inc.

  • Sato, K.-I. (1999). Lévy processes and infinitely divisible distributions. Cambridge University Press.

  • Schlemm, E., Stelzer, R. (2012a). Quasi maximum likelihood estimation for strongly mixing state space models and multivariate Lévy-driven CARMA processes. Electronic Journal of Statistics, 6, 2185–2234.

    Article  MathSciNet  Google Scholar 

  • Schlemm, E., Stelzer, R. (2012b). Multivariate CARMA processes, continuous-time state space models and complete regularity of the innovations of the sampled processes. Bernoulli, 18(1), 46–63.

    Article  MathSciNet  Google Scholar 

  • Thornton, M. A., Chambers, M. J. (2017). Continuous time ARMA processes: Discrete time representation and likelihood evaluation. Journal of Economic Dynamics & Control, 79, 48–65.

    Article  MathSciNet  Google Scholar 

  • Tsai, H., Chan, K. (2005). Quasi-maximum likelihood estimation for a class of continuous-time long-memory processes. Journal of Time Series Analysis, 26(5), 691–713.

    Article  MathSciNet  Google Scholar 

  • Walker, A. M. (1964). Asymptotic properties of least-squares estimates of parameters of the spectrum of a stationary non-deterministic time-series. Journal of the Australian Mathematical Society, 4, 363–384.

    Article  MathSciNet  Google Scholar 

  • Whittle, P. (1951). Hypothesis testing in time series analysis. PhD thesis, Uppsala University, Uppsala.

  • Whittle, P. (1953). Estimation and information in stationary time series. Arkiv för Matematik, 2(5), 423–434.

    Article  MathSciNet  Google Scholar 

  • Zadrozny, P. (1988). Gaussian likelihood of continuous-time ARMAX models when data are stocks and flows at different frequencies. Econometric Theory, 4(1), 108–124.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Celeste Mayer.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

The Supplementary Material contains the detailed proofs for the adjusted Whittle estimator, some auxiliary results and further simulations.

Below is the link to the electronic supplementary material.

Supplementary material 1 (pdf 198 KB)

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Fasen-Hartmann, V., Mayer, C. Whittle estimation for continuous-time stationary state space models with finite second moments. Ann Inst Stat Math 74, 233–270 (2022). https://doi.org/10.1007/s10463-021-00802-6

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10463-021-00802-6

Keywords

Navigation