Skip to main content
Log in

A three-step local smoothing approach for estimating the mean and covariance functions of spatio-temporal Data

  • Published:
Annals of the Institute of Statistical Mathematics Aims and scope Submit manuscript

Abstract

Spatio-temporal data are common in practice. Existing methods for analyzing such data often employ parametric modelling with different sets of model assumptions. However, spatio-temporal data in practice often have complicated structures, including complex spatial and temporal data variation, latent spatio-temporal data correlation, and unknown data distribution. Because such data structures reflect the complicated impact of confounding variables, such as weather, demographic variables, life styles, and other cultural and environmental factors, they are usually too complicated to describe by parametric models. In this paper, we suggest a general modelling framework for estimating the mean and covariance functions of spatio-temporal data using a three-step local smoothing procedure. The suggested method can well accommodate the complicated structure of real spatio-temporal data. Under some regularity conditions, the consistency of the proposed estimators is established. Both simulation studies and a real-data application show that our proposed method could work well in practice.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  • Altman, N. S. (1990). Kernel smoothing of data with correlated errors. Journal of the American Statistical Association, 85, 749–759.

    Article  MathSciNet  Google Scholar 

  • Brabanter, K. D., Brabanter, J. D., Suykens, J. A. K., De Moor, B. (2011). Kernel regression in the presence of correlated errors. Journal of Machine Learning Research, 12, 1955–1976.

    MathSciNet  MATH  Google Scholar 

  • Bradley, J. R., Holan, S. H., Wikle, C. K. (2015). Multivariate spatio-temporal models for high-dimensional areal data with application to longitudinal employer-household dynamics. The Annals of Applied Statistics, 9, 1761–1791.

    Article  MathSciNet  Google Scholar 

  • Choi, I., Li, B., Wang, X. (2013). Nonparametric estimation of spatial and space-time covariance function. Journal of Agricultural, Biological, and Environmental Statistics, 18, 611–630.

    Article  MathSciNet  Google Scholar 

  • Cressie, N., Huang, H.-C. (1999). Classes of nonseparable, spatio-temporal stationary covariance functions. Journal of the American Statistical Association, 94, 1330–1340.

    Article  MathSciNet  Google Scholar 

  • Cressie, N., Wikle, C. (2011). Statistics for Spatio-Temporal Data. New York: Wiley.

    MATH  Google Scholar 

  • Dahlaus, R. (1997). Fitting time series models to nonstationary processes. Annals of Statistics, 25, 1–37.

    MathSciNet  Google Scholar 

  • Datta, A., Banerjee, S., Finley, A. O., Hamm, N. A., Schaap, M. (2016). Nonseparable dynamic nearest-neighbor Gaussian process models for large spatio-temporal data with an application to particulate matter analysis. The Annals of Applied Statistics, 10, 1286–1316.

    Article  MathSciNet  Google Scholar 

  • Diggle, P. J., Moraga, P., Rowlingson, B., Taylor, B. M. (2013). Spatial and spatio-temporal log-Gaussian Cox processes: extending the geostatistical paradigm. Statistical Science, 28, 542–563.

    Article  MathSciNet  Google Scholar 

  • Epanechnikov, V. A. (1969). Non-parametric estimation of a multivariate probability density. Theory of Probability and its Applications, 14, 153–158.

    Article  MathSciNet  Google Scholar 

  • Fonseca, T. C. O., Steel, M. F. J. (2011). Non-Gaussian spatiotemporal modelling through scale mixing. Biometrika, 98, 761–774.

    Article  MathSciNet  Google Scholar 

  • Hall, P., Lahiri, S. N., Polzehl, J. (1995). On bandwidth choice in nonparametric regression with both short- and long-range dependent errors. The Annals of Statistics, 23, 1921–1936.

    MathSciNet  MATH  Google Scholar 

  • Heuvelink, G. B. M., Griffith, D. A. (2010). Space-time geostatistics for geography: a case study of radiation monitoring across parts of Germany. Geographical Analysis, 42, 161–179.

    Article  Google Scholar 

  • Higham, N. J. (1998). Computing a nearest symmetric positive semidefinite matrix. Linear Algebra and its Applications, 103, 103–118.

    Article  MathSciNet  Google Scholar 

  • Kafadar, K. (1996). Smoothing geographical data, particularly rates of disease. Statistics in Medicine, 15, 2539–2560.

    Article  Google Scholar 

  • Liang, K. Y., Zeger, S. L. (1986). Longitudinal data analysis using generalized linear models. Biometrika, 73, 13–22.

    Article  MathSciNet  Google Scholar 

  • Lindström, J., Szpiro, A., Sampson, P.D., Bergen, S., Sheppard, L. (2015), “Spatiotemporal: an R package for spatio-temporal modelling of air-pollution,” https://cran.rproject.org/web/packages/SpatioTemporal/index.html.

  • Møller, J., Syversveen, A. R., Waagepetersen, R. P. (1998). Log-gaussian cox processes. Scandinavian Journal of Statistics, 25, 451–482.

    Article  MathSciNet  Google Scholar 

  • Opsomer, J., Wang, Y., Yang, Y. (2001). Nonparametric regressin with correlated errors. Statistical Science, 16, 134–153.

    Article  MathSciNet  Google Scholar 

  • Qiu, P. (2005). Image Processing and Jump Regression Analysis. New York: John Wiley.

    Book  Google Scholar 

  • Robinson, P. M. (1989). Nonparametric estimation of time-varying parameters (pp. 253–264). Statistical Analysis and Forecasting of Economic Structural Change, Berlin: Springer.

    Google Scholar 

  • Shand, L., Li, B. (2017). Modeling nonstationarity in space and time. Biometrics, 73, 759–768.

    Article  MathSciNet  Google Scholar 

  • Stroud, J. R., Müller, P., Sansó, B. (2001). Dynamic models for spatiotemporal data. Journal of the Royal Statistical Society: Series B, 63, 673–689.

    Article  MathSciNet  Google Scholar 

  • Taylor, B. M., Davies, T. M., Rowlingson, B. S., Diggle, P. J. (2015). Bayesian inference and data augmentation schemes for spatial, spatiotemporal and multivariate log-Gaussian Cox processes in R. Journal of Statistical Software, 63, 1–48.

    Article  Google Scholar 

  • Vogt, M., Linton, O. (2014). Nonparametric estimation of a periodic sequence in the presence of a smooth trend. Biometrika, 101, 121–140.

    Article  MathSciNet  Google Scholar 

  • Wikle, C. K., Hooten, M. B. (2010). A general science-based framework for dynamical spatio-temporal models. Test, 19, 417–451.

    Article  MathSciNet  Google Scholar 

  • Wikle, C. K., Zammit-Mangion, A., Cressie, N. (2019). Spatio-Temporal Statistics with R. Boca Raton, FL: Chapman Hall/CRC.

    Book  Google Scholar 

  • Yang, K., Qiu, P. (2018). Spatiotemporal incidence rate data analysis by nonparametric regression. Statistics in Medicine, 37, 2094–2107.

    Article  MathSciNet  Google Scholar 

  • Yang, K., Qiu, P. (2019). Nonparametric estimation of the spatio-temporal covariance structure. Statistics in Medicine, 38, 4555–4565.

    Article  MathSciNet  Google Scholar 

Download references

Acknowledgements

The authors would like to thank the editor, the associate editor, and two anonymous referees for their constructive comments and suggestions, which improved the quality of the paper greatly. This research was supported in part by the NSF Grant DMS-1914639 in USA.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Peihua Qiu.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary material 1 (pdf 266 KB)

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Yang, K., Qiu, P. A three-step local smoothing approach for estimating the mean and covariance functions of spatio-temporal Data. Ann Inst Stat Math 74, 49–68 (2022). https://doi.org/10.1007/s10463-021-00787-2

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10463-021-00787-2

Keywords

Navigation