Skip to main content
Log in

Comparing the marginal densities of two strictly stationary linear processes

  • Published:
Annals of the Institute of Statistical Mathematics Aims and scope Submit manuscript

Abstract

In this paper, we adapt a data-driven smooth test to the comparison of the marginal distributions of two independent, short or long memory, strictly stationary linear sequences. Some illustrations are shown to evaluate the performances of our test.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

References

  • Abadir, K. M., Distaso, W., Giraitis, L., Koul, H. L. (2014). Asymptotic normality for weighted sums of linear processes. Econometric Theory, 30, 252–284.

    Article  MathSciNet  Google Scholar 

  • Andrews, D. M. K. (1991). Heteroskedasticity and autocorrelation consistent covariance matrix estimation. Econometrica, 59, 817–856.

    Article  MathSciNet  Google Scholar 

  • Andrews, D. W. K., Monahan, J. C. (1992). An improved heteroskedasticity and autocorrelation consistent covariance matrix estimator. Econometrica, 60, 953–966.

    Article  MathSciNet  Google Scholar 

  • Bai, S., Taqqu, M. S. (2018). How the instability of ranks under long memory affects large-sample inference. Statistical Science, 33, 96–116.

    Article  MathSciNet  Google Scholar 

  • Baillie, R. T. (1996). Long memory processes and fractional integration in econometrics. Journal of Econometrics, 73, 5–59.

    Article  MathSciNet  Google Scholar 

  • Beran, J., Feng, Y., Ghosh, S., Kulik, R. (2013). Long-memory processes: Probabilistic properties and statistical methods. Berlin: Springer.

  • Dedecker, J., Doukhan, P., Lang, G., Leon, J.R., Louhichi, S., Prieur, C. (2007). Weak dependence: With examples and applications. InLecture notes in statistics (Vol. 190). New York: Springer.

  • Dittmann, I., Granger, C. (2002). Properties of nonlinear transformations of fractionally integrated processes. Journal of Econometrics, 110, 113–133.

    Article  MathSciNet  Google Scholar 

  • Dobrushin, R. L., Major, P. (1979). Non-central limit theorems for non-linear functionals of Gaussian fields. Zeitschrift für Wahrscheinlichkeitstheorie und verwandte Gebiete, 50, 27–52.

    Article  MathSciNet  Google Scholar 

  • Doukhan, P., Oppenheim, G., Taqqu, M. S. (2003). Theory and applications of long-range dependence. Boston: Birkhauser.

    MATH  Google Scholar 

  • Doukhan, P., Pommeret, D., Reboul, L. (2015). Data driven smooth test of comparison for dependent sequences. Journal of Multivariate Analysis, 139, 147–165.

    Article  MathSciNet  Google Scholar 

  • Ghattas, B., Pommeret, D., Reboul, L., Yao, A. F. (2011). Data driven smooth test for paired populations. Journal of Statistical Planning and Inference, 141(1), 262–275.

    Article  MathSciNet  Google Scholar 

  • Giraitis, L. (1985). Central limit theorem for functionals of a linear process. Lithuanian Mathematical Journal, 25, 25–35.

    Article  MathSciNet  Google Scholar 

  • Giraitis, L., Koul, H. L., Surgailis, D. (2012). Large sample inference for long memory processes. London: Imperial College Press.

    Book  Google Scholar 

  • Giraitis, L., Surgailis, D. (1999). Central limit theorem for the empirical process of a linear sequence with long memory. Journal of Statistical Planning Inference, 80, 81–93.

    Article  MathSciNet  Google Scholar 

  • Giraitis, L., Surgailis, D. (1990). A central limit theorem for quadratic forms in strongly dependent linear variables and its applications to the asymptotic normality of Whittle estimate. Probabability Theory and Related Fields, 86, 87–104.

    Article  Google Scholar 

  • Granger, C. W. J., Joyeux, R. (1980). An introduction to long-memory series models and fractional differencing. Journal of Time Series Analysis, 1, 15–29.

    Article  MathSciNet  Google Scholar 

  • Hipel, K. W., McLeod, A. I. (1994). Time series modelling of water resources and environmental system. Amsterdam: Elsevier.

    Google Scholar 

  • Ho, H. C. (2000). On functionals of linear processes with estimated parameters. Statistica Sinica, 12, 1171–1190.

    MathSciNet  MATH  Google Scholar 

  • Ho, H. C., Hsing, T. (1997). Limit theorems for functionals of moving averages. The Annals of Probability, 25, 1636–1669.

    Article  MathSciNet  Google Scholar 

  • Ho, H. C., Hsing, T. (1999). On the asymptotic expansion of the empirical process of long memory moving averages. The Annals Statistics, 24, 992–1024.

    MathSciNet  MATH  Google Scholar 

  • Hosking, J. R. M. (1981). Fractional differencing. Biometrika, 68, 165–176.

    Article  MathSciNet  Google Scholar 

  • Hsing, T. (2000). Linear processes, long-range dependence and asymptotic expansions. Statistical Inference for Stochastic Processes, 3, 19–29.

    Article  MathSciNet  Google Scholar 

  • Ignaccolo, R. (2004). Goodness-of-fit tests for dependent data. Nonparametric Statistics, 16, 19–38.

    Article  MathSciNet  Google Scholar 

  • Janic-Wróblewska, J. A., Ledwina, T. (2000). Data driven rank test for twosample problem. The Scandinavian Journal of Statistics, 27, 281–297.

    Article  Google Scholar 

  • Kallenberg, W. C. M., Ledwina, T. (1995). Consistency and Monte Carlo simulation of a data driven version of smooth goodness-of-fit tests. The Annals of Statistics, 23, 1594–1608.

    Article  MathSciNet  Google Scholar 

  • Koul, H. L., Surgailis, D. (2010). Goodness-of-fit testing under long memory. Journal of Statistical Planning and Inference, 140, 3742–3753.

    Article  MathSciNet  Google Scholar 

  • Koul, H. L., Mimoto, N., Surgailis, D. (2013). Goodness-of-fit tests for long memory moving average marginal density. Metrika, 76(205–224), 2013.

    MathSciNet  MATH  Google Scholar 

  • Koul, H. L., Mimoto, N., Surgailis, D. (2016). A goodness-of-fit test for marginal distribution of linear random fields with long memory. Metrika, 79, 165–193.

    Article  MathSciNet  Google Scholar 

  • Munk, A., Stockis, J. P., Valeinis, J., Giese, G. (2009). Neyman smooth goodness-of-fit tests for the marginal distribution of dependent data. Annals of the Institute of Statistical Mathematics, 63, 939–959.

    Article  MathSciNet  Google Scholar 

  • Newey, W. K., West, K. D. (1987). A simple positive semidefinite heteroskedasticity and autocorrelation consistent covariance matrix. Econometrica, 55, 701–708.

    MathSciNet  MATH  Google Scholar 

  • Newey, W. K., West, K. D. (1994). Automatic lag selection in covariance matrix estimation. Review of Economic Studies, 61, 631–653.

    Article  MathSciNet  Google Scholar 

  • Robinson, P. M. (2003). Time series with long memory. Oxford: Oxford University Press.

    MATH  Google Scholar 

  • Rosenblatt, M. (1956). A central limit theorem and a strong mixing condition. Proceedings of the National Academy of Sciences of the United States of America, 42, 43–47.

    Article  MathSciNet  Google Scholar 

  • Sang, H., Sang, Y. (2016). Memory properties of transformations of linear processes. Statistical Inference for Stochastic Processes, 20, 79–103.

    Article  MathSciNet  Google Scholar 

  • Schwarz, G. (1978). Estimating the dimension of a model. The Annals of Statistics, 6(2), 461–464.

    Article  MathSciNet  Google Scholar 

  • Surgailis, D. (2000). Long-range dependence and Appell rank. The Annals of Probability, 28, 478–497.

    Article  MathSciNet  Google Scholar 

  • Szewcsak, Z. (2012). Relative stability in strictly stationary random sequences. Stochastic Processes and their Applications, 122(8), 2811–2829.

    Article  MathSciNet  Google Scholar 

  • Taqqu, M. S. (1975). Weak convergence to fractional Brownian motion and to the Rosenblatt process. Zeitschrift fÃijr Wahrscheinlichkeitstheorie und Verwandte Gebiete, 31, 287–302.

    Article  MathSciNet  Google Scholar 

  • Wu, W. B. (2002). Central limit theorems for functionals of linear processes and their applications. Statistica Sinica, 12, 635–649.

    MathSciNet  MATH  Google Scholar 

  • Wu, W. B. (2006). Unit root testing for functionals of linear processes. Econometric Theory, 22, 1–14.

    Article  MathSciNet  Google Scholar 

Download references

Acknowledgements

The authors thank the referees and the associate editor for their careful reading and their suggestions which lead to improve the manuscript. The authors thank Donatas Surgailis for his kind help. This work has been developed within the MME-DII center of excellence (ANR-11-LABEX-0023-01) and PAI-CONICYT MEC Number 80170072.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Denys Pommeret.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (pdf 353 KB)

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Doukhan, P., Grublytė, I., Pommeret, D. et al. Comparing the marginal densities of two strictly stationary linear processes. Ann Inst Stat Math 72, 1419–1447 (2020). https://doi.org/10.1007/s10463-019-00730-6

Download citation

  • Received:

  • Revised:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10463-019-00730-6

Keywords

Navigation