Skip to main content

Advertisement

Log in

Model selection for the robust efficient signal processing observed with small Lévy noise

  • Published:
Annals of the Institute of Statistical Mathematics Aims and scope Submit manuscript

Abstract

We develop a new model selection method for an adaptive robust efficient nonparametric signal estimation observed with impulse noise which is defined by a general non-Gaussian Lévy process. On the basis of the developed method, we construct estimation procedures which are analyzed in two settings: in non-asymptotic and in asymptotic ones. For the first time for such models, we show non-asymptotic sharp oracle inequalities for quadratic and robust risks, i.e., we show that the constructed procedures are optimal in the sense of sharp oracle inequalities. Next, by making use of the obtained oracle inequalities, we provide an asymptotic efficiency property for the developed estimation methods in an adaptive setting when the signal/noise ratio goes to infinity. We apply the developed model selection methods for the signal number detection problem in multi-path information transmission.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Akaike, H. (1974). A new look at the statistical model identification. IEEE Transactions on Automatic Control, AC – 19, 716–723.

    Article  MathSciNet  Google Scholar 

  • Barron, A., Birgé, L., Massart, P. (1999). Risk bounds for model selection via penalization. Probability Theory and Related Fields, 113, 301–415.

    Article  MathSciNet  Google Scholar 

  • Bichteler, K., Jacod, J. (1983). Calcul de Malliavin pour les diffusions avec sauts: Existence d’une densité dans le cas unidimensionnel. In Séminaire de probabilité. Lecture notes in mathematics, XVII (Vol. 986, pp. 132–157). Berlin: Springer.

  • Cont, R., Tankov, P. (2004). Financial modelling with jump processes. Financial mathematics series. Boca Raton: Chapman & Hall/CRC.

    MATH  Google Scholar 

  • El-Behery, I. N., Macphie, R. H. (1978). Maximum likelihood estimation of the number, directions and strengths of point radio sources from variable baseline interferometer data. IEEE Transactions on Antennas and Propagation, 26(2), 294–301.

    Article  Google Scholar 

  • Flaksman, A. G. (2002). Adaptive signal processing in antenna arrays with allowance for the rank of the impule-response matrix of a multipath channel. Izvestiya Vysshikh Uchebnykh Zavedenij, Radiofizika, 45(12), 1064–1077.

    Google Scholar 

  • Fourdrinier, D., Pergamenshchikov, S. (2007). Improved selection model method for the regression with dependent noise. Annals of the Institute of Statistical Mathematics, 59(3), 435–464.

    Article  MathSciNet  Google Scholar 

  • Galtchouk, L. I., Pergamenshchikov, S. M. (2006). Asymptotically efficient estimates for non parametric regression models. Statistics and Probability Letters, 76(8), 852–860.

    Article  MathSciNet  Google Scholar 

  • Galtchouk, L., Pergamenshchikov, S. (2009b). Adaptive asymptotically efficient estimation in heteroscedastic nonparametric regression. Journal of Korean Statistical Society, 38(4), 305–322.

    Article  MathSciNet  Google Scholar 

  • Galtchouk, L. I., Pergamenshchikov, S. M. (2009a). Sharp non asymptotic oracle inequalities for nonparametric heteroscedastic regression models. Journal of Nonparametric Statistics, 21(1), 1–16.

    Article  MathSciNet  Google Scholar 

  • Ibragimov, I. A., Khasminskii, R. Z. (1981). Statistical estimation: Asymptotic theory. New York: Springer.

    Book  Google Scholar 

  • Jacod, J., Shiryaev, A. N. (2002). Limit theorems for stochastic processes. 2nd ed. Berlin: Springer.

  • Kassam, S. A. (1988). Signal detection in non-Gaussian noise. IX. New York: Springer.

    Book  Google Scholar 

  • Konev, V. V., Pergamenshchikov, S. M. (2009a). Nonparametric estimation in a semimartingale regression model. Part 1. Oracle inequalities. Tomsk State University Journal of Mathematics and Mechanics, 3, 23–41.

    Google Scholar 

  • Konev, V. V., Pergamenshchikov, S. M. (2009b). Nonparametric estimation in a semimartingale regression model. Part 2. Robust asymptotic efficiency. Tomsk State University Journal of Mathematics and Mechanics, 4, 31–45.

    Google Scholar 

  • Konev, V. V., Pergamenshchikov, S. M. (2012). Efficient robust nonparametric estimation in a semimartingale regression model. Annales de l’institut Henri Poincare (B) Probability and Statistics, 48(4), 1217–1244.

    Article  MathSciNet  Google Scholar 

  • Konev, V. V., Pergamenshchikov, S. M. (2015). Robust model selection for a semimartingale continuous time regression from discrete data. Stochastic Processes and Their Applications, 125, 294–326.

    Article  MathSciNet  Google Scholar 

  • Konev, V., Pergamenshchikov, S., Pchelintsev, E. (2014). Estimation of a regression with the impulse type noise from discrete data. Theory of Probability and Its Applications, 58(3), 442–457.

    Article  MathSciNet  Google Scholar 

  • Kutoyants, Yu A. (1984). Parameter estimation for stochastic processes. Berlin: Heldeman-Verlag.

    MATH  Google Scholar 

  • Kutoyants, Y. A. (1994). Identification of dynamical systems with small noise. Mathematics and its applications, Vol. 300. Dordrecht: Kluwer Academic Publishers Group.

    Book  Google Scholar 

  • Liptser, R. S., Shiryaev, A. N. (1977). Statistics of random processes. General theory. New York: Springer.

    Book  Google Scholar 

  • Mallows, C. (1973). Some comments on \(C_{p}\). Technometrics, 15, 661–675.

    MATH  Google Scholar 

  • Manelis, B. V. (2007). Algorithms for tracking and demodulation of the mobile communication signal in the conditions of the Indiscriminating multipath propagation. Radiotekhnika, 4, 16–21. (in Russian).

    Google Scholar 

  • Marinelli, C., Röckner, M. (2014). On maximal inequalities for purely discontinuous martingales in infinite dimensions. In Séminaire de Probabilités. Lecture notes in mathematics, XLVI (pp. 293–315). Berlin: Springer.

  • Novikov, A. A. (1975). On discontinuous martingales. Theory of Probability and Its Applications, 20(1), 11–26.

    Article  MathSciNet  Google Scholar 

  • Pchelintsev, E. (2013). Improved estimation in a non-Gaussian parametric regression. Statistical Inference for Stochastic Processes, 16(1), 15–28.

    Article  MathSciNet  Google Scholar 

  • Pinsker, M. S. (1981). Optimal filtration of square integrable signals in gaussian white noise. Problems of Transimission information, 17, 120–133.

    Google Scholar 

  • Trifonov, A. P., Kharin, A. V. (2013). Estimating the number of signals with unknown amplitudes. Nelineinyi Mir, 11(12), 853–866. (in Russian).

    Google Scholar 

  • Trifonov, A. P., Kharin, A. V. (2015a). Estimation of the number of radio signals with unknown amplitudes and phases. Radiophysics and Quantum Electronics, 58(1), 57–70.

    Article  Google Scholar 

  • Trifonov, A. P., Kharin, A. V. (2015b). Estimation of the number of orthogonal signals with unknown non-energy parameters. Radioelectronics and Communications Systems, 58(8), 362–370.

    Article  Google Scholar 

  • Trifonov, A. P., Kharin, A. V., Chernoyarov, O. V., Kalashnikov, K. S. (2015). Determining the number of radio signals with unknown phases. International Journal on Communications Antenna and Propagation, 5(6), 367–374.

    Google Scholar 

  • Trifonov, A. P., Shinakov, Yu S. (1986). Joint distinction of signals and estimation of their parameters on the background noise. Moscow: Radio i Svyaz’. (in Russian).

    Google Scholar 

Download references

Acknowledgements

The second and last authors are partly supported by the Ministry of Education and Science of the Russian Federation in the framework of the research Project No. 2.3208.2017/4.6. The last author is partly supported by the Russian Federal Professor program (Project No. 1.472.2016/1.4, Ministry of Education and Science).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Serguei Pergamenchtchikov.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

This work was supported by the RSF Grant 17-11-01049 (National Research Tomsk State University). The online version of this article contains supplementary material.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (pdf 245 KB)

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Beltaief, S., Chernoyarov, O. & Pergamenchtchikov, S. Model selection for the robust efficient signal processing observed with small Lévy noise. Ann Inst Stat Math 72, 1205–1235 (2020). https://doi.org/10.1007/s10463-019-00726-2

Download citation

  • Received:

  • Revised:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10463-019-00726-2

Keywords

Navigation