Robust functional estimation in the multivariate partial linear model

  • Michael Levine


We consider the problem of adaptive estimation of the functional component in a partial linear model where the argument of the function is defined on a q-dimensional grid. Obtaining an adaptive estimator of this functional component is an important practical problem in econometrics where exact distributions of random errors and the parametric component are mostly unknown. An estimator of the functional component that is adaptive over the wide range of multivariate Besov classes and robust to a wide choice of distributions of the linear component and random errors is constructed. It is also shown that the same estimator is locally adaptive over the same range of Besov classes and robust over large collections of distributions of the linear component and random errors as well. At any fixed point, this estimator attains a local adaptive minimax rate.


Multivariate Besov space Median Adaptive estimation Robust estimation Multivariate partial linear model 


  1. Amato, U., Antoniadis, A., Pensky, M. (2006). Wavelet kernel penalized estimation for non-equispaced design regression. Statistics and Computing, 16(1), 37–55.Google Scholar
  2. Antoniadis, A., Pham, D. T. (1998). Wavelet regression for random or irregular design. Computational Statistics & Data Analysis, 28(4), 353–369.Google Scholar
  3. Autin, F., Claeskens, G., Freyermuth, J.-M. (2014). Hyperbolic wavelet thresholding methods and the curse of dimensionality through the maxiset approach. Applied and Computational Harmonic Analysis, 36(2), 239–255.Google Scholar
  4. Besov, O. V., Ilin, V. P., Nikolskii, S. (1979). Integral representations of functions and imbedding theorems (Vol. II). Washington: Wiley.Google Scholar
  5. Brown, L. D., Cai, T. T., Low, M. G., Zhang, C.-H. (2002). Asymptotic equivalence theory for nonparametric regression with random design. Annals of Statistics, 30(3), 688–707.Google Scholar
  6. Brown, L. D., Cai, T. T., Zhou, H. H. (2008). Robust nonparametric estimation via wavelet median regression. Annals of Statistics, 36(5), 2055–2084.Google Scholar
  7. Brown, L. D., Levine, M., Wang, L. (2016). A semiparametric multivariate partially linear model: A difference approach. Journal of Statistical Planning and Inference, 178, 99–111.Google Scholar
  8. Cai, T. T. (1999). Adaptive wavelet estimation: A block thresholding and oracle inequality approach. Annals of Statistics, 27(3), 898–924.MathSciNetCrossRefzbMATHGoogle Scholar
  9. Cai, T. T., Brown, L. D. (1998). Wavelet shrinkage for nonequispaced samples. Annals of Statistics, 26(5), 1783–1799.Google Scholar
  10. Casella, G., Berger, R. L. (2002). Statistical inference (Vol. 2). Pacific Grove: Duxbury.Google Scholar
  11. Daubechies, I. (1992). Ten lectures on wavelets. Philadelphia: SIAM.CrossRefzbMATHGoogle Scholar
  12. Donoho, D. L., Johnstone, I. M., Kerkyacharian, G., Picard, D. (1995). Wavelet shrinkage: Asymptopia? Journal of the Royal Statistical Society. Series B (Methodological), 57(2), 301–369.Google Scholar
  13. Fang, K.-T., Kotz, S., Ng, K. W. (1990). Symmetric multivariate and related distributions. London: Chapman and Hall.Google Scholar
  14. Hall, P., Turlach, B. A. (1997). Interpolation methods for nonlinear wavelet regression with irregularly spaced design. Annals of Statistics, 25(5), 1912–1925.Google Scholar
  15. Härdle, W., Liang, H., Gao, J. (2012). Partially linear models. Heidelberg: Springer.Google Scholar
  16. He, X., Shi, P. (1996). Bivariate tensor-product b-splines in a partly linear model. Journal of Multivariate Analysis, 58(2), 162–181.Google Scholar
  17. Horowitz, J. L. (2009). Semiparametric and nonparametric methods in econometrics (Vol. 12). Berlin: Springer.CrossRefzbMATHGoogle Scholar
  18. Kohler, M. (2008). Multivariate orthogonal series estimates for random design regression. Journal of Statistical Planning and Inference, 138(10), 3217–3237.MathSciNetCrossRefzbMATHGoogle Scholar
  19. Kovac, A., Silverman, B. W. (2000). Extending the scope of wavelet regression methods by coefficient-dependent thresholding. Journal of the American Statistical Association, 95(449), 172–183.Google Scholar
  20. Levine, M. (2015). Minimax rate of convergence for an estimator of the functional component in a semiparametric multivariate partially linear model. Journal of Multivariate Analysis, 140, 283–290.MathSciNetCrossRefzbMATHGoogle Scholar
  21. Meyer, Y. (1995). Wavelets and operators (Vol. 1). Cambridge: Cambridge University Press.zbMATHGoogle Scholar
  22. Müller, U. U., Schick, A., Wefelmeyer, W. (2012). Estimating the error distribution function in semiparametric additive regression models. Journal of Statistical Planning and Inference, 142(2), 552–566.Google Scholar
  23. Neumann, M. H. (2000). Multivariate wavelet thresholding in anisotropic function spaces. Statistica Sinica, 10(2), 399–431.MathSciNetzbMATHGoogle Scholar
  24. Pensky, M., Vidakovic, B. (2001). On non-equally spaced wavelet regression. Annals of the Institute of Statistical Mathematics, 53(4), 681–690.Google Scholar
  25. Robinson, P. M. (1988). Root-n-consistent semiparametric regression. Econometrica: Journal of the Econometric Society, 56(4), 931–954.Google Scholar
  26. Sardy, S., Percival, D. B., Bruce, A. G., Gao, H.-Y., Stuetzle, W. (1999). Wavelet shrinkage for unequally spaced data. Statistics and Computing, 9(1), 65–75.Google Scholar
  27. Schick, A. (1996). Root-n consistent estimation in partly linear regression models. Statistics & Probability Letters, 28(4), 353–358.MathSciNetCrossRefzbMATHGoogle Scholar
  28. Schmalensee, R., Stoker, T. M. (1999). Household gasoline demand in the united states. Econometrica, 67(3), 645–662.Google Scholar
  29. Scott, D. W. (2015). Multivariate density estimation: Theory, practice, and visualization. New York: Wiley.Google Scholar
  30. Stuck, B. W. (2000). An historical overview of stable probability distributions in signal processing. In IEEE international conference on acoustics speech and signal processing, vol 6, p. VI–3795. IEEE; 1999.Google Scholar
  31. Stuck, B. W., Kleiner, B. (1974). A statistical analysis of telephone noise. Bell Labs Technical Journal, 53(7), 1263–1320.Google Scholar
  32. Triebel, H. (2006). Theory of function spaces. III, volume 100 of monographs in mathematics. Basel: BirkhauserVerlag.Google Scholar
  33. Vidakovic, B. (2009). Statistical modeling by wavelets (Vol. 503). New York: Wiley.zbMATHGoogle Scholar
  34. Wang, J.-L., Xue, L., Zhu, L., Chong, Y. S. (2010). Estimation for a partial-linear single-index model. Annals of Statistics, 38(1), 246–274.Google Scholar
  35. Zhang, S., Wong, M.-Y., Zheng, Z. (2002). Wavelet threshold estimation of a regression function with random design. Journal of Multivariate Analysis, 80(2), 256–284.Google Scholar

Copyright information

© The Institute of Statistical Mathematics, Tokyo 2018

Authors and Affiliations

  1. 1.Department of StatisticsPurdue UniversityWest LafayetteUSA

Personalised recommendations