Skip to main content
Log in

A weighted estimator of conditional hazard rate with left-truncated and dependent data

  • Published:
Annals of the Institute of Statistical Mathematics Aims and scope Submit manuscript

Abstract

Based on empirical likelihood method, we construct new weighted estimators of conditional density and conditional survival functions when the interest random variable is subject to random left-truncation; further, we define a plug-in weighted estimator of the conditional hazard rate. Under strong mixing assumptions, we derive asymptotic normality of the proposed estimators which permit to built a confidence interval for the conditional hazard rate. The finite sample behavior of the estimators is investigated via simulations too.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  • Bagkavos, D. (2011a). Local linear hazard rate estimation and bandwidth selection. Journal of Statistical Computation and Simulation, 81, 1517–1531.

    Article  MathSciNet  MATH  Google Scholar 

  • Bagkavos, D. (2011b). Local linear hazard rate estimation and bandwidth selection. Annals of the Institute of Statistical Mathematics, 63, 1019–1046.

    Article  MathSciNet  MATH  Google Scholar 

  • Berlinet, A., Elamine, A., Mas, A. (2011). Local linear regression for functional data. Annals of the Institute of Statistical Mathematics, 63, 1047–1075.

  • Bradley, R. C. (2007). Introduction to strong mixing conditions (Vol. I–III). Utah: Kendrick Press.

    MATH  Google Scholar 

  • Cai, J., Kim, J. (2003). Nonparametric quantile estimation with correlated failure time data. Lifetime Data Analysis, 9, 357–371.

  • Collomb, G., Hassani, S., Sarda, P., Vieu, P. (1985). Convergence uniforme d’estimateurs de la fonction de hasard pour des observations dépendantes: méthodes du noyau et des \(k\)-points les plus proches. Comptes Rendus de l’Académie des Sciences. Series I, Mathematics, 301, 653–656.

  • Dedecker, J., Doukhan, P., Lang, G., León, R., Louhichi, S., Prieur, C. (2007). Weak dependence: with examples and applications. Lecture notes in statistics, 190. New York: Springer.

  • Fan, J., Yao, Q. (2003). Nonlinear time series. New York: Springer.

  • Fan, J., Yao, Q., Tong, H. (1996). Estimation of conditional densities and sensitivity measures in nonlinear dynamical systems. Biometrika, 83, 189–206.

  • Hall, P., Heyde, C. C. (1980). Martingale limit theory and its application. New York: Academic Press.

  • Hall, P., Presnell, B. (1999). Intentionally biased bootstrap methods. Journal of the Royal Statistical Society, Series B, 61, 143–158.

  • Hall, P., Wolff, R. C. L., Yao, Q. (1999). Methods for estimating a conditional distribution function. Journal of the American Statistical Association, 94, 154–163.

  • He, S., Yang, G. (1998). Estimation of the truncation probability in the random truncation model. The Annals of Statistics, 26, 1011–1027.

  • Kim, C., Bae, W., Choi, H., Park, B. U. (2005). Non-parametric hazard function estimation using the Kaplan–Meier estimator. Journal of Nonparametric Statistics, 17, 937–948.

  • Kim, C., Oh, M., Yang, S. J., Choi, H. (2010). A local linear estimation of conditional hazard function in censored data. Journal of the Korean Statistical Society, 39, 347–355.

  • Lecoutre, J. P., Ould Saïd, E. (1992). Estimation de la densité conditionnelle et de la fonction de hasard conditionnelle pour un processus fortement mélangeant avec censure. Comptes Rendus de l’Académie des Sciences. Series I, Mathematics, 314, 295–300.

  • Lecoutre, J. P., Ould Saïd, E. (1995). Hazard rate estimation for strong-mixing and censored processes. Journal of Nonparametric Statistics, 5, 83–89.

  • Liang, H. Y. (2012). Weighted nonparametric regression estimation with truncated and dependent data. Journal of Nonparametric Statistics, 24(4), 1051–1073.

    Article  MathSciNet  MATH  Google Scholar 

  • Liang, H. Y., Baek, J. I. (2016). Asymptotic normality of conditional density estimation with left-truncated and dependent data. Statistical Papers, 57, 1–20.

  • Liang, H. Y., Fan, G. L. (2009). Berry–Esseen type bounds of estimators in a semiparametric model with linear process errors. Journal of Multivariate Analysis, 100, 1–15.

  • Liang, H. Y., de Uña-Álvarez, J., Iglesias-Pérez, M. C. (2011). Local polynomial estimation of a conditional mean function with dependent truncated data. Test, 20, 653–677.

  • Lynden-Bell, D. (1971). A method of allowing for known observational selection in small samples applied to 3CR quasars. Monthly Notices of the Royal Astronomical Society, 155, 95–118.

    Article  Google Scholar 

  • Ould Saïd, E., Lemdani, M. (2006). Asymptotic properties of a nonparametric regression function estimator with randomly truncated data. Annals of the Institute of Statistical Mathematics, 58, 357–378.

  • Ould Saïd, E., Tatachak, A. (2007). Asymptotic properties of the kernel estimator of the conditional mode for the left truncated model. Comptes Rendus de l’Académie des Sciences. Series I, Mathematics, 344, 651–656.

  • Ould Saïd, E., Tatachak, A. (2009). Strong consistency rate for the kernel mode under strong mixing hypothesis and left truncation. Communications in Statistics: Theory and Methods, 38, 1154–1169.

  • Owen, A. (1990). Empirical likelihood ratio confidence regions. The Annals of Statistics, 18, 90–120.

    Article  MathSciNet  MATH  Google Scholar 

  • Quintela-del-Río, A. (2008). Hazard function given a functional variable: non-parametric estimation under strong mixing conditions. Journal of Nonparametric Statistics, 20, 413–430.

    Article  MathSciNet  MATH  Google Scholar 

  • Sarda, P., Vieu, P. (1991). Smoothing parameter selection in hazard estimation. Statistics and Probability Letters, 11, 429–434.

  • Spierdijk, L. (2008). Nonparametric conditional hazard rate estimation: A local linear approach. Computational Statistics and Data Analysis, 52, 2419–2434.

    Article  MathSciNet  MATH  Google Scholar 

  • Stute, W. (1993). Almost sure representation of the product-limit estimator for truncated data. The Annals of Statistics, 21, 146–156.

    Article  MathSciNet  MATH  Google Scholar 

  • Stute, W., Wang, J. L. (2008). The central limit theorem under random truncation. Bernoulli, 14, 604–622.

  • Van Keilegom, I., Veraverbeke, N. (2001). Hazard rate estimation in nonparametric regression with censored data. Annals of the Institute of Statistical Mathematics, 53, 730–745.

  • Woodroofe, M. (1985). Estimating a distribution function with truncated data. The Annals of Statistics, 13, 163–177.

    Article  MathSciNet  MATH  Google Scholar 

  • Zhou, W. (2011). A weighted quantile regression for randomly truncated data. Computational Statistics and Data Analysis, 55, 554–566.

    Article  MathSciNet  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Han-Ying Liang.

Additional information

H.-Y. Liang was supported by the National Natural Science Foundation of China (11271286, 11671299).

Appendix

Appendix

Lemma 2

(Fan and Yao (2003), Proposition 2.6, p. 72) Let \(V_1,\ldots , V_m\) be \(\alpha \)-mixing and complex-valued random variables measurable with respect to the \(\sigma \)-algebra \(\mathscr {F}^{j_1}_{i_1}, \ldots , \mathscr {F}^{j_m}_{i_m}\), respectively, with \(1\le i_1<j_1<\cdots <j_m\le n,~ i_{l+1}-j_l\ge w\ge 1\) and \(P(|V_j|\le 1)=1\) for \(l, j=1, 2, \ldots , m\). Then \(|E(\prod ^m_{j=1}V_j)-\prod ^m_{j=1}EV_j|\le 16(m-1)\alpha (w), \) where \(\mathscr {F}^b_a=\sigma \{V_i , a\le i\le b\}\) and \(\alpha (w)\) is the mixing coefficient.

Lemma 3

(Hall and Heyde (1980), Corollary A.2, p. 278) Suppose that X and Y are random variables such that \(E|X|^p<\infty , E|Y|^q<\infty \), where p, \(q>1\), \(p^{-1}+q^{-1}<1\). Then

$$\begin{aligned} |EXY-EXEY| \le 8\Vert X\Vert _p\Vert Y\Vert _q\Big \{\sup _{A\in \sigma (X), B\in \sigma (Y)} |P(A\cap B) -P(A)P(B)|\Big \}^{1-p^{-1}-q^{-1}}. \end{aligned}$$

Lemma 4

(Liang et al. (2011), Lemma 5.4) Suppose that \(\alpha (k)=O(k^{-\gamma })\) for some \(\gamma >3\), and that (A0) holds. Then \(\sup _{y\ge a_F}|G_n(y)-G(y)|=O_\mathbf P(n^{-1/2})\).

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Liang, HY., Ould Saïd, E. A weighted estimator of conditional hazard rate with left-truncated and dependent data. Ann Inst Stat Math 70, 155–189 (2018). https://doi.org/10.1007/s10463-016-0587-4

Download citation

  • Received:

  • Revised:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10463-016-0587-4

Keywords

Navigation