Andersen, T. G., Bollerslev, T. (1998). Answering the skeptics: Yes, standard volatility models do provide accurate forecasts. International Economic Review, 39(4), 885–905.
Barndorff-Nielsen, O. E., Hansen, P. R., Lunde, A., Shephard, N. (2008). Designing realized kernels to measure the ex post variation of equity prices in the presence of noise. Econometrica, 76(6), 1481–1536.
Barndorff-Nielsen, O. E., Hansen, P. R., Lunde, A., Shephard, N. (2011). Multivariate realised kernels: consistent positive semi-definite estimators of the covariation of equity prices with noise and non-synchronous trading. Journal of Econometrics, 162(2), 149–169.
Barndorff-Nielsen, O. E., Shephard, N. (2002). Econometric analysis of realized volatility and its use in estimating stochastic volatility models. Journal of the Royal Statistical Society Series B Statistical Methodology, 64(2), 253–280.
Barndorff-Nielsen, O. E., Shephard, N. (2004). Power and bipower variation with stochastic volatility and jumps. Journal of Financial Econometrics, 2, 1–48.
Bibinger, M. (2011). Asymptotics of asynchronicity. Technical Report, Humboldt-Universität zu Berlin, URL:http://sfb649.wiwi.hu-berlin.de/papers/pdf/SFB649DP2011-033.pdf.
Cox, D. (1970). Renewal Theory. London: Methuen Co.
Fukasawa, M., Rosenbaum, M. (2012). Central limit theorems for realized volatility under hitting times of an irregular grid. Stochastic Processes and Their Applications, 122(12), 3901–3920.
Hayashi, T., Yoshida, N. (2005). On covariance estimation of non-synchronously observed diffusion processes. Bernoulli, 11(2), 359–379.
Hayashi, T., Yoshida, N. (2008). Asymptotic normality of a covariance estimator for nonsynchronously observed diffusion processes. Annals of the Institute of Statistical Mathematics, 60(2), 367–406.
Hayashi, T., Yoshida, N. (2011). Nonsynchronous covariation process and limit theorems. Stochastic Processes and Their Applications, 121, 2416–2454.
Hayashi, T., Jacod, J., Yoshida, N. (2011). Irregular sampling and central limit theorems for power variations: The continuous case. Annales de l’Institut Henri Poincaré (B) Probabilités et Statistiques, 47(4), 1197–1218.
Jacod, J. (1997). On continuous conditional gaussian martingales and stable convergence in law. Séminaire de Probabilitiés, Strasbourg, tome, 31, 232–246.
MathSciNet
Google Scholar
Jacod, J. (2008). Asymptotic properties of realized power variations and related functionals of semimartingales. Stochastic Processes and Their Applications, 118(4), 517–559.
MATH
MathSciNet
Article
Google Scholar
Jacod, J. (2012). Statistics and high frequency data. In M. Kessler, A. Lindner, M. Sørensen (Eds.) Proceedings of the 7th Séminaire Européen de Statistique, Cartagena, 2007: Statistical methods for stochastic differential equations (pp. 191–308). CRC Press: Boca Raton.
Jacod, J., Podolskij, M., Vetter, M. (2010). Limit theorems for moving averages of discretized processes plus noise. Annals of Statistics, 38(3), 1478–1545.
Jacod, J., Protter, P. (1998). Asymptotic error distributions for the euler method for stochastic differential equations. Annals of Probability, 26, 267–307.
Jacod, J., Shiryaev, A. N. (2003). Limit theorems for stochastic processes, volume 288 of Grundlehren der Mathematischen Wissenschaften [Fundamental Principles of Mathematical Sciences] (2nd ed.). Berlin: Springer.
Mancini, C. (2009). Non-parametric threshold estimation for models with stochastic diffusion coefficient and jumps. Scandinavian Journal of Statistics, 36(2), 270–296.
MATH
MathSciNet
Article
Google Scholar
Mykland, P., Zhang, L. (2012). The econometrics of high frequency data. In M. Kessler, A. Lindner, M. Sørensen (Eds.) Proceedings of the 7th Séminaire Européen de Statistique, Cartagena, 2007: Statistical methods for stochastic differential equations (pp. 109–190). CRC Press, Boca Raton.
Mykland, P. A., Zhang, L. (2009). Inference for continuous semimartingales observed at high frequency. Econometrica, 77(5), 1403–1445.
Podolskij, M., Vetter, M. (2009). Estimation of volatility functionals in the simultaneous presence of microstructure noise and jumps. Bernoulli, 15(3), 634–658.
Podolskij, M., Vetter, M. (2010). Understanding limit theorems for semimartingales: a short survey. Statistica Neerlandica, 64(3), 329–351.
Veraart, A. E. D. (2010). Inference for the jump part of quadratic variation of Itô semimartingales. Econometric Theory, 26(2), 331–368.
MATH
MathSciNet
Article
Google Scholar
Zhang, L., Mykland, P. A., Aït-Sahalia, Y. (2005). A tale of two time scales: determining integrated volatility with noisy high-frequency data. Journal of the American Statistical Association, 100(472), 1394–1411.