Balkema, A., de Haan, L. (1974). Residual life time at great age. The Annals of Probability, 2, 792–804.
Google Scholar
Beirlant, J., Goegenbeur, Y., Teugels, J., Segers, J. (2004). Statistics of extremes: theory and applications. Chichester: Wiley.
Beirlant, J., Figueiredo, F., Gomes, M., Vandewalle, B. (2008). Improved reduced-bias tail index and quantile estimators. Journal of Statistical Planning and Inference, 138, 1851–1870.
Google Scholar
Beran, J., Schell, D. (2012). On robust tail index estimation. Computational Statistics and Data Analysis, 56(11), 3430–3443.
Google Scholar
Billingsley, P. (1968). Convergence of probability measures. New York: Wiley.
Brazauskas, V., Serfling, R. (2000). Robust and efficient estimation of the tail index of a single-parameter Pareto distribution. North American Actuarial Journal, 4, 12–27.
Google Scholar
Cheng, S., Peng, L. (2001). Confidence intervals for the tail index. Bernoulli, 7(5), 751–760.
Google Scholar
Csörgő, S., Mason, D. M. (1985). Central limit theorems for sums of extreme values. Mathematical Proceedings of the Cambridge Philosophical Society, 98(3), 547–558.
Google Scholar
Csörgő, S., Viharos, L. (1997). Asymptotic normality of least-squares estimators of tail indices. Bernoulli, (3)3, 351–370.
Csörgő, S., Deheuvels, P., Mason, D.M. (1985). Kernel estimates of the tail index of a distribution. The Annals of Statistics, 13, 1050–1077.
Google Scholar
Davis, R., Resnick, S. (1984). Tail estimates motivated by extreme value theory. The Annals of Statistics, 12, 1467–1487.
Google Scholar
de Haan, L., Ferreira, A. (2006). Extreme value theory: an introduction. New York: Springer.
de Haan, L., Peng, L. (1998). Comparison of tail index estimators. Statistica Neerlandica, 52, 60–70.
Google Scholar
de Haan, L., Resnick, S. (1998). On asymptotic normality of the hill estimator. Communications in Statistics. Stochastic Models, 14, 849–866.
Google Scholar
Embrechts, P., Klüppelberg, C., Mikosch, T. (1997). Modelling extremal events. New York: Springer.
Fabián, Z., Stehlík, M. (2009). On robust and distribution sensitive Hill like method. IFAS research report 43. Linz: Department for Applied Statistics, Johannes Kepler University Linz.
Ferreira, A., de Vries, C. (2004). Optimal confidence intervals of the tail index and high quantiles. Discussion paper TI 2004-090/2. The Netherlands: Tinbergen Institute.
Finkelstein, M., Tucker, H.G., Veeh, J.A. (2006). Pareto tail index estimation revisited. North American Actuarial Journal, 10(1), 1–10.
Google Scholar
Haeusler, E., Teugels, J.L. (1985). On asymptotic normality of Hill’s estimator for the exponent of regular variation. The Annals of Statistics, 13(2), 743–756.
Google Scholar
Hall, P. (1982). On some simple estimates of an exponent of regular variation. Journal of the Royal Statistical Society: Series B, 44(1), 37–42.
Google Scholar
Hampel, F. (1968). Contributions to the theory of robust estimation. Ph.D. thesis, Berkeley: Department of Statistics, University of California.
Hampel, F.R., Ronchetti, E.M., Rousseeuw, P.J., Stahel, W.A. (1986). Robust statistics: the approach based on influence functions. New York: Wiley.
Henry III, J.B. (2009). A harmonic moment tail index estimator. Journal of Statistical Theory and Applications, 8(2), 141–162.
Hill, B.M. (1975). A simple general approach to inference about the tail of a distribution. Annals of Statistics, 3(5), 1163–1174.
Google Scholar
Juárez, S.F., Schucany, W.R. (2004). Robust and efficient estimation for the generalized Pareto distribution. Extremes, 7, 237–251.
Google Scholar
Knight, K. (2012). A simple modification of the Hill estimator with applications to robustness and bias reduction (preprint).
Lu, J.-C., Peng, L. (2002). Likelihood based confidence intervals for the tail index. Extremes, 5, 337–352.
Google Scholar
Mason, D. (1982). Laws of large numbers of sums of extreme values. The Annals of Probability, 10, 168–177.
Google Scholar
Peng, L., Welsh, A. (2002). Robust estimation of the generalized Pareto distribution. Extremes, 4, 53–65.
Google Scholar
Pickands, J. (1975). Statistical inference using extreme order statistics. Annals of Statistics, 3, 119–131.
Qi, Y. (2008). Bootstrap and empirical likelihood methods in extremes. Extremes, 11, 81–97.
Google Scholar
Reiss, R., Thomas, M. (2005). Statistical analysis of extreme values (for insurance, finance, hydrology and other fields) (3rd rev ed.). Basel: Birkhäuser.
Resnick, S. (2007). Heavy-tail phenomena: probabilistic and statistical modeling. New York: Springer.
Stehlík, M., Potocký, R., Waldl, H., Fabián, Z. (2010). On the favourable estimation of fitting heavy tailed data. Computational Statistics, 25, 485–503.
Google Scholar
Stehlík, M., Fabián, Z., Střelec, L. (2012). Small sample robust testing for normality against Pareto tails. Communications in Statistics: Simulation and Computation, 41(7), 1167–1194.
Google Scholar
Vandewalle, B. (2004). Some robust and semi-parametric methods in extreme value theory. Doctoral thesis, Leuven: Department of Mathematics, Katholieke Universiteit Leuven.
Vandewalle, B., Beirlant, J., Hubert, M. (2004). A robust estimator of the tail index based on an exponential regression model. In M. Hubert, G. Pison, A. Struyf, S. van Aelst (Eds.), Theory and applications of recent robust methods (pp. 367–376). Basel: Birkhauser.
Vandewalle, B., Beirlant, J., Christmann, A., Hubert, M. (2007). A robust estimator for tail index of Pareto-type distributions. Computational Statistics and Data Analysis, 51, 6252–6268.
Google Scholar
Weissman, I. (1978). Estimation of parameters and larger quantiles based on the k largest observations. Journal of the American Statistical Association, 73(364), 812–815.
Google Scholar
Worms, J., Worms, R. (2011). Empirical likelihood based confidence regions for first order parameters of heavy-tailed distributions. Journal of Statistical Planning and Inference, 141(8), 2769–2786.
Google Scholar