Skip to main content
Log in

Properties of residuals for spatial point processes

  • Published:
Annals of the Institute of Statistical Mathematics Aims and scope Submit manuscript

Abstract

For any point process in \({\mathbb{R}}^d\) that has a Papangelou conditional intensity λ, we define a random measure of ‘innovations’ which has mean zero. When the point process model parameters are estimated from data, there is an analogous random measure of ‘residuals’. We analyse properties of the innovations and residuals, including first and second moments, conditional independence, a martingale property, and lack of correlation. Some large sample asymptotics are studied. We derive the marginal distribution of smoothed residuals by solving a distributional equivalence.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Alm S. (1988). Approximation and simulation of the distributions of scan statistics for Poisson processes in higher dimensions. Extremes 1(1): 111–126

    Article  MathSciNet  Google Scholar 

  • Andersen P., Borgan Ø., Gill R., Keiding N. (1993). Statistical Models based on Counting Processes. New York, Springer

    MATH  Google Scholar 

  • Atkinson A. (1985). Plots, Transformations and Regression. Number 1 in Oxford Statistical Science Series. Clarendon, Oxford University Press

    Google Scholar 

  • Baddeley A., Turner R., Møller J., Hazelton M. (2005). Residual analysis for spatial point processes (with discussion). Journal of the Royal Statistical Society, Series B 67(5): 617–666

    Article  MATH  MathSciNet  Google Scholar 

  • Brillinger D. (1978). Comparative aspects of the study of ordinary time series and of point processes. In: Krishnaiah P.(ed) Developments in Statistics. NewYork, Academic Press, pp. 33–133

    Google Scholar 

  • Brillinger D. (1994). Time series, point processes, and hybrids. Canadian Journal of Statistics 22, 177–206

    Article  MATH  MathSciNet  Google Scholar 

  • Brillinger D., Segundo J. (1979). Empirical examination of the threshold model of neuron firing. Biological Cybernetics 35, 213–220

    Article  Google Scholar 

  • Daley D., Vere-Jones D. (1988). An Introduction to the Theory of Point Processes. New York, Springer

    MATH  Google Scholar 

  • Feller, W. (1971). An Introduction to Probability Theory and its Applications, volume 2. New York: John Wiley and Sons, second edition.

    Google Scholar 

  • Fleming T., Harrington D. (1991). Counting Processes and Survival Analysis. New York, Wiley

    MATH  Google Scholar 

  • Georgii H.-O. (1976). Canonical and grand canonical Gibbs states for continuum systems. Communications of Mathematical Physics 48, 31–51

    Article  MathSciNet  Google Scholar 

  • Kalbfleisch J., Prentice R. (1980). The Statistical Analysis of Failure Time Data. NewYork, Wiley

    MATH  Google Scholar 

  • Karr A. (1985). Point Processes and Their Statistical Inference. New York, Dekker

    Google Scholar 

  • Lewis P. (1972). Recent results in the statistical analysis of univariate point processes. In: Lewis P.(ed) Stochastic Point Processes. New York, Wiley, pp. 1–54

    Google Scholar 

  • Møller J., Waagepetersen R. (2003). Statistical Inference and Simulation for Spatial Point Processes. Boca Raton, Chapman and Hall/CRC

    Google Scholar 

  • Møller, J. Waagepetersen, R. (2007). Modern spatial point process modelling and inference. Scandinavian Journal of Statistics. (To appear).

  • Nguyen X, Zessin H. (1979). Integral and differential characterizations of Gibbs processes. Mathematische Nachrichten 88, 105–115

    Article  MATH  MathSciNet  Google Scholar 

  • Ogata Y. (1988). Statistical models for earthquake occurrences and residual analysis for point processes. Journal of the American Statistical Association 83, 9–27

    Article  Google Scholar 

  • Ogata Y., Katsura K., Tanemura M. (2003). Modelling heterogeneous space-time occurrences of earthquakes and its residual analysis. Applied Statistics 52(4): 499–509

    MATH  MathSciNet  Google Scholar 

  • Papangelou F. (1974). The conditional intensity of general point processes and an application to line processes. Zeitschrift fuer Wahscheinlichkeitstheorie und verwandte Gebiete 28, 207–226

    Article  MATH  MathSciNet  Google Scholar 

  • Preston C, (1976). Random Fields. New York, Springer

    MATH  Google Scholar 

  • Ripley B., Kelly F. (1977). Markov point processes. Journal of the London Mathematical Society 15, 188–192

    Article  MATH  MathSciNet  Google Scholar 

  • Ruelle D. (1969). Statistical Mechanics. New York, Wiley

    MATH  Google Scholar 

  • Stoyan D., Grabarnik P. (1991). Second-order characteristics for stochastic structures connected with Gibbs point processes. Mathematische Nachrichten 151, 95–100

    Article  MATH  MathSciNet  Google Scholar 

  • Takács L. (1955). On stochastic processes connected with certain physical recording apparatuses. Acta Mathematica Academiae Scientiarum Hungaricae 6, 363–374

    Article  MATH  MathSciNet  Google Scholar 

  • Vervaat W. (1979). On a stochastic difference equation and a representation of non-negative infinitely divisible random variables. Advances in Applied Probability 11, 750–783

    Article  MATH  MathSciNet  Google Scholar 

  • Zhuang J., Ogata Y., Vere-Jones D. (2005). Diagnostic analysis of space-time branching processes for earthquakes. In Baddeley A., Gregori P., Mateu J., Stoica R., Stoyan D., (eds) Case Studies in Spatial Point Process Modelling, number 185 in Lecture Notes in Statistics, chapter 15. New York: Springer

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to A. Baddeley.

About this article

Cite this article

Baddeley, A., Møller, J. & Pakes, A.G. Properties of residuals for spatial point processes. Ann Inst Stat Math 60, 627–649 (2008). https://doi.org/10.1007/s10463-007-0116-6

Download citation

  • Received:

  • Revised:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10463-007-0116-6

Keywords

Navigation