Skip to main content
Log in

Accurate confidence intervals in regression analyses of non-normal data

  • Published:
Annals of the Institute of Statistical Mathematics Aims and scope Submit manuscript

Abstract

A linear model in which random errors are distributed independently and identically according to an arbitrary continuous distribution is assumed. Second- and third-order accurate confidence intervals for regression parameters are constructed from Charlier differential series expansions of approximately pivotal quantities around Student’s t distribution. Simulation verifies that small sample performance of the intervals surpasses that of conventional asymptotic intervals and equals or surpasses that of bootstrap percentile-t and bootstrap percentile-|t| intervals under mild to marked departure from normality.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Boik R.J. (1998). A local parameterization of orthogonal and semi-orthogonal matrices with applications. Journal of Multivariate Analysis.67, 244–276

    Article  MATH  MathSciNet  Google Scholar 

  • Box G.E.P., Cox D.R. (1964). An analysis of transformations. Journal of the Royal Statistical Society, Series B, 26, 211–252

    MATH  MathSciNet  Google Scholar 

  • Bowman K.O., Beauchamp J.J., Shenton L.R. (1977). The distribution of the t-statistic under non-normality. International Statistical Review, 45, 233–242

    Article  MATH  MathSciNet  Google Scholar 

  • Chung K.L. (1946). The approximate distribution of Student’s statistic. The Annals of Mathematical Statistics. 17, 447–465

    Article  MATH  Google Scholar 

  • Cornish E.A., Fisher R.A. (1937). Moments and cumulants in the specification of distributions. Revue de l’Institut International de Statistique. 5, 307–320

    Article  Google Scholar 

  • Cressie N.A.C. (1980). Relaxing the assumptions in the one sample t-test. Australian Journal of Statistics. 22, 143–153

    MATH  MathSciNet  Google Scholar 

  • Cressie N.A.C., Sheffield L.J., Whitford H.J. (1984). Use of the one-sample t-test in the real world. Journal of Chronic Diseases. 37, 107–114

    Article  Google Scholar 

  • DiCiccio T.J., Monti A.C. (2002). Accurate confidence limits for scalar functions of vector M-estimands. Biometrika 89, 437–450

    Article  MATH  MathSciNet  Google Scholar 

  • Finney D.J. (1963). Some properties of a distribution specified by its cumulants. Technometrics. 5, 63–69

    Article  Google Scholar 

  • Fisher R.A. (1925). Expansion of “Student’s” integral in powers of n −1. Metron 5, 109–120

    Google Scholar 

  • Fujioka Y., Maesono Y. (2000). Higher order normalizing transformations of asymptotic U-statistics for removing bias, skewness and kurtosis. Journal of Statistical Planning and Inference 83, 47–74

    Article  MATH  MathSciNet  Google Scholar 

  • Gayen A.K. (1949). The distribution of Student’s t in random samples of any size drawn from non-normal universes. Biometrika. 36, 353–369

    MathSciNet  Google Scholar 

  • Geary R.C. (1947). Testing for normality. Biometrika 34, 209–242

    MATH  MathSciNet  Google Scholar 

  • Hall P. (1983). Inverting an Edgeworth expansion. The Annals of Statistics 11, 569–576

    Article  MATH  MathSciNet  Google Scholar 

  • Hall P. (1987). Edgeworth expansion for Student’s t statistic under minimal moment conditions. The Annals of Probability 15, 920–931

    Article  MATH  MathSciNet  Google Scholar 

  • Hall P. (1989). Unusual properties of bootstrap confidence intervals in regression problems. Probability Theory and Related Fields 81, 247–273

    Article  MATH  MathSciNet  Google Scholar 

  • Hall P. (1992a). On the removal of skewness by transformation. Journal of the Royal Statistical Society, Series B 54, 221–228

    Google Scholar 

  • Hall P. (1992b). The Bootstrap and Edgeworth Expansion. Berlin Heidelberg New York: Springer

    Google Scholar 

  • Hill G.W., Davis A.W. (1968). Generalized expansions of Cornish-Fisher type. The Annals of Mathematical Statistics 39, 1264–1273

    Article  MathSciNet  MATH  Google Scholar 

  • Huber P. (1973). Robust regression, asymptotics, conjectures and Monte Carlo. The Annals of Statistics 1, 799–821

    Article  MATH  MathSciNet  Google Scholar 

  • Johnson N.J. (1978). Modified t tests and confidence intervals for asymmetrical populations. Journal of the American Statistical Association 73, 536–544

    Article  MATH  MathSciNet  Google Scholar 

  • Kong F., Levin B. (1996). Edgeworth expansions for the conditional distributions in logistic regression models. Journal of Statistical Planning and Inference 52, 109–129

    Article  MATH  MathSciNet  Google Scholar 

  • Konishi S. (1991). Normalizing transformations and bootstrap confidence intervals. The Annals of Statistics 19, 2209–2225

    Article  MATH  MathSciNet  Google Scholar 

  • Navidi W. (1989). Edgeworth expansions for bootstrapping regression models. The Annals of Statistics 4, 1472–1478

    Article  MathSciNet  Google Scholar 

  • Pace L., Salvan A. (1997). Principles of Statistical Inference from a Neo-Fisherian Perspective. World Scientific, Singapore

    MATH  Google Scholar 

  • Pearson E.S., Please N.W. (1975). Relation between the shape of population distribution and the robustness of four simple test statistics. Biometrika 62, 223–241

    Article  MATH  MathSciNet  Google Scholar 

  • Peiser A.M. (1949). Correction to “Asymptotic formulas for significance levels of certain distributions”. The Annals of Mathematical Statistics 20, 128–129

    Article  MathSciNet  Google Scholar 

  • Posten H.O. (1979). The robustness of the one-sample t-test over the Pearson system. Journal of Statistical Computation and Simulation 9, 133–149

    Article  MATH  Google Scholar 

  • Qumsiyeh M.B. (1990). Edgeworth expansions in regression models. Journal of Multivariate Analysis 35, 86–101

    Article  MATH  MathSciNet  Google Scholar 

  • Qumsiyeh M.B. (1994). Bootstrapping and empirical Edgeworth expansions in multiple linear regression models. Communications in Statistics – Theory and Methods 23, 3227–3239

    Article  MATH  MathSciNet  Google Scholar 

  • Ractliffe, J. F. (1968). The effect on the t distribution of non-normality in the sampled population. Applied Statistics, 17, 42–48. Corr. (1968), 17, 203.

    Google Scholar 

  • Rousseeuw P.J., Leroy A.M. (1987). Robust Regression and Outlier Detection. New York: Wiley

    MATH  Google Scholar 

  • Scheffé H. (1959). The Analysis of Variance. New York: Wiley

    MATH  Google Scholar 

  • Sen P.K., Singer J.M. (1993). Large Sample Methods in Statistics: An Introduction with Applications. London: Chapman & Hall

    MATH  Google Scholar 

  • Staudte R.G., Sheather S.J. (1990). Robust Estimation and Testing. New York: Wiley

    MATH  Google Scholar 

  • Tiku M.L. (1963). Approximation to Student’s t distribution in terms of Hermite and Laguerre polynomials. The Journal of the Indian Mathematical Society. 27, 91–102

    MathSciNet  Google Scholar 

  • Venables W.N., Ripley B.D. (2002). Modern Applied Statistics with S, 4th edition. Berlin Heidelberg New York: Springer

    MATH  Google Scholar 

  • Wallace D.L. (1958). Asymptotic approximations to distributions. The Annals of Mathematical Statistics. 29, 635–654

    Article  MathSciNet  MATH  Google Scholar 

  • Wilcox R.R. (1997). Introduction to Robust Estimation and Hypothesis Testing. San Diego: Academic Press

  • Wilcox R.R. (1998). The goals and strategies of robust methods. British Journal of Mathematical and Statistical Psychology, 51, 1–39

    Google Scholar 

  • Yanagihara H. (2003). Asymptotic expansion of the null distribution of test statistic for linear hypothesis in nonnormal linear model. Journal of Multivariate Analysis. 84, 222–246

    Article  MATH  MathSciNet  Google Scholar 

  • Yanagihara H., Yuan K.H. (2005). Four improved statistics for contrasting means by correcting skewness and kurtosis. British Journal of Mathematical and Statistical Psychology 58, 209–237

    Article  MathSciNet  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Robert J. Boik.

About this article

Cite this article

Boik, R.J. Accurate confidence intervals in regression analyses of non-normal data. AISM 60, 61–83 (2008). https://doi.org/10.1007/s10463-006-0085-1

Download citation

  • Received:

  • Revised:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10463-006-0085-1

Keywords

Navigation